



BIAS Sorbent NCCC Testing/CCSI Modeling

**David C. Miller and James C. Fisher II** National Energy Technology Laboratory July 2014



## **Integrated Materials Development**





X

# **Carbon Capture** — *Supported Amine Sorbents*

**<u>Objective</u>:** Deliver a test stand with a sorbent to NCCC facilities for slip stream testing AND deliver data for CCSI validation

<u>Approach</u>: Simultaneously develop a sorbent and full circulation test stand



Scale-up





#### **TGA & Performance Data Collection**





#### **Sorbent Development: CCSI communication**





## **Polyethyleneimine Silane Coupling**



**Pressure Chemical – Pan Dyer** 



#### **Summary for Basic Immobilized Amine Sorbent**

- •Silica substrate candidate of choice
- High capture capacity 3-4 mol/kg
- Working capacities in the 2 mol/kg range
- Loading results confirmed by TVA and ADA-ES
- •CO<sub>2</sub> regeneration improbable
- •Stable at 110-115°C
- Reduced moisture loading to minimize regeneration duty
- Kinetic study conducted
- Scaled to large production scale



PEI on CARiACT Q10 (100 to 350 μm dia.)













## **Circulating Reactor Development (C2U)**

- Integrated circulating fluid bed
  reactor
- Develop an understanding of engineering challenges
- System has not been optimized for 32D sorbent – currently achieve about 0.5 mol/kg with 32D
- Full post analysis of material available at NETL and partners
  - Particle Size Distribution
  - Amine Loading
  - Capacity Testing





## **C2U Operation and Testing Modes**

#### **Full loop Circulation**

- 1. Real experience in Dual CFB Reactor Design
- 2. Allows the Sorbent to be circulated
- 3. System is not optimized for 32D – low capacities observed
- 4. Circulation Rate is difficult to control
- 5. Sorbent was too light, pressure drops to small



#### Batch Testing

- 1. Bubbling Fluid Bed
- 2. Easy to control fluidized bed
- 3. Bed holds ~ 2 kg
- 4. Multi-port gas extraction
- 5. Rapid testing procedure
- 6. Ease of modeling



## CCSI For Accelerating Technology Development











Rapidly synthesize optimized processes to identify promising concepts Better understand internal behavior to reduce time for troubleshooting Quantify sources and effects of uncertainty to guide testing & reach larger scales faster

Stabilize the cost during commercial deployment





#### Tools to develop an optimized process using rigorous models





#### Simulation & Experiments to reduce time for design/troubleshooting





#### **C2U Experimental Design and CFD Model**





## **C2U and validation data**

#### Statistical, space-filling experimental design

- 1. Cold Flow testing hydrodynamics
- 2. Hot Flow testing heat transfer, hydrodynamics
- 3. Reaction testing reaction kinetics, heat transfer, hydrodynamics
- Experiment parameters
  - Gas flow rate
  - CO<sub>2</sub> fraction in gas
  - Coil temperature

#### • Quantities of interest (QOI)

- Bed pressure
- Bed temperature
- CO<sub>2</sub> total adsorption
- CO<sub>2</sub> breakthrough curves

| So           | rbent A     | x            | Sorbent 32D  |              |              |               |              |                       |
|--------------|-------------|--------------|--------------|--------------|--------------|---------------|--------------|-----------------------|
| Cold Flow    | Hot Flow    |              | Cold Flow    | Hot Flow     |              | Reacting Flow |              |                       |
| Flow (SLPM)  | Flow (SLPM) | Temp(°C)     | Flow (SLPM)  | Flow (SLPM   | ) Temp(°C)   | Flow (SLPM)   | Temp(°C)     | CO <sub>2</sub> Conc. |
| 49.8         | 16.9        | 70.3         | 19.2         | 21.9         | 60.4         | 51.3          | 62.9         | 18.9                  |
| 15           | 48.8        | 60.2         | 23.6         | 39.5         | 66.7         | 40            | 62.3         | 10.8                  |
| 58.9         | 35.4        | 56.3         | 50.3         | 43.8         | 45.3         | 37            | 68.2         | 14.6                  |
| 43.7         | 38.6        | 67.4         | 51.7         | 46.3         | 40.3         | 27.3          | 72.8         | 15.7                  |
| 35.7         | 57.1        | 43.5         | 37           | 36.7         | 65           | 23.3          | 57.5         | 14.2                  |
| 29.8         | 20.8        | 58.4         | 31.9         | 31.9         | 52.1         | 59            | 40.7         | 17.4                  |
| 25.1         | 27.1        | 52.4         | 45.9         | 16.4         | 71.1         | 33.7          | 69.8         | 16.3                  |
| 20.4         | 30          | 42.7         | 57.5         | 26.7         | 47.7         | 35.6          | 41.6         | 10.4                  |
| 54.6         | 48.6        | 49           | 39.7         | 22.7         | 53.4         | 23.1          | 64.3         | 16.9                  |
| 40.3<br>38.4 | 26<br>54.7  | 77.2<br>65.6 | 25.4<br>59.6 | 52.7<br>58.1 | 78.1<br>57.7 | 32.8<br>41.3  | 59<br>70.4   | 18.3<br>20            |
| 23.2         | 41.9        | 74.2         | 33.3         | 51           | 73.4         | 20.5          | 44.8         | 14.3                  |
| 25.2<br>31.6 | 41.9        | 74.2<br>61.8 | 16.1         | 30.6         | 79.1         | 20.5<br>56.4  | 44.8<br>63.6 | 14.5                  |
| 28           | 52          | 73           | 27.4         | 59           | 68.8         | 17.9          | 48           | 10.5                  |
| 47.8         | 23          | 47.4         | 21.6         | 48.1         | 55.2         | 43            | 71.7         | 18.2                  |
| 18           | 15.8        | 45.3         | 43.3         | 19.3         | 65.7         | 56.9          | 57.9         | 10.2                  |
| 33.4         | 29.5        | 69.7         | 54.9         | 39.3         | 43.5         | 32            | 79.1         | 15.3                  |
| 52.6         | 44.4        | 40.5         | 41.4         | 49.4         | 63           | 49.1          | 61.6         | 17.1                  |
| 46           | 36          | 50           | 29.6         | 29.7         | 76           | 44.8          | 65.4         | 19.7                  |
| 56.9         | 19.2        | 76.3         | 47.7         | 56.1         | 42.6         | 50.2          | 46.2         | 16.5                  |
| 15           | 32.2        | 63.8         | 16.1         | 35.2         | 58.5         | 59.7          | 44.3         | 13                    |
| 31.6         | 46.1        | 54.4         | 45.9         | 17.1         | 48.5         | 57.5          | 59.3         | 15.9                  |
| 49.8         | 53.3        | 56.8         | 57.5         | 42.3         | 51.6         | 38.2          | 76.9         | 14.9                  |
| 35.7         | 58.7        | 79.4         | 41.4         | 25.8         | 71.9         | 24.5          | 67.8         | 12                    |
| 20.4         | 15.8        | 45.3         | 25.4         | 17.1         | 48.5         | 49.3          | 52.7         | 19.5                  |
| 46           | 38.6        | 67.4         | 33.3         | 30.6         | 79.1         | 52.2          | 50.2         | 11.4                  |
| 25.1         | 36          | 50           | 21.6         | 58.1         | 57.7         | 45.9          | 60.1         | 12.6                  |
| 43.7         | 58.7        | 79.4         | 29.6         | 51           | 73.4         | 15.9          | 67           | 12.2                  |
| 56.9         | 53.3        | 56.8         | 51.7         | 19.3         | 65.7         | 35.8          | 53.1         | 13.9                  |
| 54.6         | 19.2        | 76.3         | 50.3         | 43.8         | 45.3         | 55            | 54           | 14.6                  |
| 29.8         |             |              | 37           |              |              | 48.2          | 54.9         | 13.1                  |
| 38.4         |             |              | 43.3         |              |              | 54.4          | 75.7         | 11.9                  |
| 47.8<br>23.2 |             |              | 19.2<br>27.4 |              |              | 15.1<br>34.6  | 56.4<br>47   | 15.1<br>12.7          |
| 58.9         |             |              | 54.9         |              |              | 30.2          | 77.6         | 16.7                  |
| 33.4         |             |              | 39.7         |              |              | 26.7          | 48.3         | 10.8                  |
| 18           |             |              | 31.9         |              |              | 19.9          | 46.5         | 17.9                  |
| 40.3         |             |              | 47.7         |              |              | 28.6          | 50.7         | 13.3                  |
| 28           |             |              | 59.6         |              |              | 25.1          | 74.5         | 11.6                  |
| 52.6         |             |              | 23.6         |              |              | 22.2          | 76.4         | 16.1                  |
|              |             |              |              |              |              | 46.8          | 40.9         | 19.2                  |
|              |             |              |              |              |              | 39.2          | 66.1         | 18.4                  |
|              |             |              |              |              |              | 30.8          | 42.7         | 13.4                  |
|              |             |              |              |              |              | 44.5          | 69.1         | 15.6                  |
|              |             |              |              |              |              |               |              |                       |



72.5

73.7

49.4

79.3

59 75.7

40.9

76.9

67.8

44.8

59.3

57.9

38.2

18.8

17.7

19.3 17.5 11.6

17.7 18.3

11.9

19.2

14.9

12

14.3

15.9

10.2

## **C2U and validation data**

- Statistical, space-filling experimental design
  - 1. Cold Flow testing hydrodynamics
  - 2. Hot Flow testing heat transfer, hydrodynamics
  - 3. Reaction testing reaction kinetics, heat transfer, hydrodynamics
- Experiment parameters
  - Gas flow rate
  - CO<sub>2</sub> fraction in gas
  - Coil temperature
- Quantities of interest (QOI)
  - Bed pressure
  - Bed temperature
  - CO<sub>2</sub> total adsorption
  - CO<sub>2</sub> breakthrough curves



#### **Calibrated Model Results & Experimental Data**





#### **Deliverables and Next Steps**

- C2U Validation Milestone Report
  - Model setup, input data files, parameter determinations and comparison data sets for easy implementation with a different software or for a different application
  - Statistical tools and methods used in the calibration/validation process with best-practices documentation
- Next steps:
  - Simulation with quantified confidence for 1MW BFB adsorber
  - Prediction/Validation for 1 MW pilot system



#### **C2U Moves to NCCC For Additional Testing**

- Dismantled, shipped, and reassembled the C2U in Wilsonville, Alabama
- Conducted 50 hours of circulating flow without sorbent performance degradation
- Currently conducting 1,000 hour exposure in batch test mode for contamination







## Acknowledgements

#### Sorbents/C2U

- Dave Luebke
- Mac Gray
- Jim Hoffman
- Larry Shadle
- Jim Spenik
- Rupen Panday
- NCCC Support Team

#### CCSI

- Xin Sun
- Curt Storlie
- Kevin Lai
- Wenxiao Pan
- Zhijie Xu
- Tingwen Li
- Jeff Dietiker
- The other 80+ researchers on the CCSI Technical Team

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



#### **CCSI Toolset: Info Session This Evening @ 5:45 in Ellwood**

| Basic Data Submodels           | High viscosity solvent model                                           |  |  |  |
|--------------------------------|------------------------------------------------------------------------|--|--|--|
| Busic Buta Subinoueis          | SorbentFit – Kinetic/diffusion basic data fitting tool with UQ         |  |  |  |
| High Resolution Filtered       | Attrition Model                                                        |  |  |  |
| Submodels                      | Cylinder Filtered Models with quantified uncertainty bounds            |  |  |  |
|                                | 1 MW Adsorber and Regenerator CFD Models (validated)                   |  |  |  |
| Validated high-fidelity        | Large scale adsorber and regenerator CFD Models                        |  |  |  |
| CFD models & UQ tools          | Statistical Model Validation Tool for Quantifying Predictions          |  |  |  |
|                                | REVEAL: Reduced Order Modeling Tools for CFD and ROM Integration Tools |  |  |  |
|                                | Bubbling Fluidized Bed Reactor Model                                   |  |  |  |
|                                | Moving Bed Reactor Model                                               |  |  |  |
| Process Models                 | Multi-stage Centrifugal Compressor Model                               |  |  |  |
|                                | Membrane CO <sub>2</sub> Separation Model                              |  |  |  |
|                                | Reference Power Plant Model                                            |  |  |  |
|                                | FOQUS – Optimization & Quantification of Uncertainty                   |  |  |  |
| Outinization and UO Toolo      | ALAMO – Surrogate models for optimization                              |  |  |  |
| Optimization and UQ Tools      | Process Synthesis Superstructure                                       |  |  |  |
|                                | Oxy-Combustion Process Optimization Model                              |  |  |  |
| Dynamics & Control             | D-RM Builder                                                           |  |  |  |
|                                | Technical Risk Model                                                   |  |  |  |
| Risk Analysis Tools            | Financial Risk Model                                                   |  |  |  |
|                                | SimSinter – Links simulation files to FOQUS/Turbine                    |  |  |  |
| Crosscutting Integration Tools | Turbine Science Gateway – Runs hundreds of thousands of simulations    |  |  |  |
|                                |                                                                        |  |  |  |

