

Electrochemical Membrane for CO₂ Capture and Power Generation

DE-FE0007634 Hossein Ghezel-Ayagh FuelCell Energy, Inc.

2014 NETL CO₂ Capture Technology Meeting July 31, 2014 Pittsburgh, PA

Ultra-Clean, Efficient, Reliable Power

Overall Project Objectives:

- ► Demonstrate ability of FCE's electrochemical membrane (ECM)-based system to separate ≥ 90% of CO₂ from a simulated PC flue-gas stream suitable for sequestration or beneficial use
- Demonstrate that ECM system is an economical alternative for postcombustion CO₂ capture in PC-based power plants, and that it meets DOE objectives for incremental cost of electricity (COE)

Project Participants:

FuelCell Energy Inc. (FCE) FuelCell Energy Ultra-Clean, Efficient, Reliable Power	System design, GAP analysis, ECM fabrication, and bench-scale testing of an 11.7 m ² area ECM system for CO_2 capture.
Pacific Northwest National Laboratory (PNNL)	Test effects of flue gas contaminants on ECM.
URS Corporation URS	Review ECM-based system design, equipment and plant costing, and flue gas clean-up system design.

	2012		2013				2014				2015					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1 Project Management																
Task 2 Technical and Economic Feasibility Study (T&EFS)																
T&EFS Updates																
Task 3 Technology Gap Identification																
Task 3.1 Contaminant Evaluation																
Task 3.2 Membrane Testing																
Task 3.3 BOP Equipment Update																
Task 4 EH&S Review																e.
Task 5 Bench-Scale Testing																

Project Funding								
DOE Share	FCE Cost Share	Project Total						
\$3,034,106	\$758,527	\$3,792,633						

Electrochemical Membrane (ECM) Technology

The driving force for CO₂ separation is electrochemical potential, not pressure differential across the membrane

- **Net Results**
- Simultaneous Power Production and CO₂ Separation from Flue Gas of an Existing Facility
- Excess Process Water Byproduct
- Complete Selectivity towards CO₂ as Compared to N₂

- ECM utilizes the same technology as FCE's commercial stand-alone fuel cell power plants
- Current manufacturing ramp-up (>70 MW/year) is reducing ECM cost

- 59MW power plant consisting of 42 stack modules adequate to power ~ 140,000 homes in S. Korea
- Supplying electric grid and district heating system
- Constructed in only 14 months

Techno-Economic Analysis

CEPACS System Block Flow Diagram

<u>Combined Electric Power and Carbon-dioxide Separation (CEPACS) System Concept Implementation</u> for 550 MW Reference PC Plant*

- Supercritical CO₂ (90% CO₂ capture from PC Plant)
- Excess Process Water
- Additional 421 MW of clean AC power @ 42.4% Efficiency (based on LHV Natural Gas)
- * Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2, DOE/NETL-2010/1397, November 2010.

Techno-Economic Analysis Results

URS

9

CEPACS Plant Layout for Large Systems

421MWe CEPACS Plant for >90% Carbon Capture from 550MWe Reference PC Plant requires ~ 12 Acres 10x 200-Stack ECM Flue Gas Enclosures **Distribution Ducting** 66> 10x De-centralized 620 Hot BOP Equipment, results in fewer long runs of hot piping

CEPACS System modularity allows for isolation of a single enclosure, resulting in near-100% availability with >90% capacity factor

ECM Testing Results

ECM Components and Single-Cell Testing Facilities

Laboratory facility for testing 250 cm² electrochemical membranes under a variety of system operating conditions.

Performance Comparison: Effect of Flue Gas Composition

ECM cell performance data for NGCC and PC plant flue gases at 93% carbon capture:

NGCC Flue Gas: 4.0% CO2

- ECM is capable of operating on flue gases with a wide range of CO₂ partial pressure
- System features (e.g. supplemental air addition, product recycle) allow tuning of cathode-side composition to optimize ECM performance
- High cell power densities at high CO₂ flux is observed in ECM tests

• ECM cell stability testing at steady state PC flue gas-based system conditions for over 2200 hours of operation:

Power Density Carbon Dioxide Flux

- The CO₂ flux remained constant through over 2200 hours of testing of a subscale membrane assembly (250 cm² area), indicating constant 90+% CO₂ capture
- The power production remained stable during test duration

FuelCellEnergy Ultra-Clean, Efficient, Reliable Power

Testing Goals:

- Assess physical and chemical interactions of main flue gas pollutants with ECM via experiments and thermodynamic modeling
- Determine effects of most volatile species (S, Cl, Hg, and Se) in flue gases on ECM performance
- Enable selection of clean-up technology for CEPACS
 System

Approach:

- Utilize ECM button cell tests to determine the effect of individual impurities on cell performance.
 - Maintain CO₂ flux
 - o Measure ECM cell resistance and voltage
 - Analyze impurity effects on ECM using Electrochemical Impedance Spectroscopy (EIS)
- Perform post-test analyses using microscopy and surface analytical tools (SEM/EDS, TEM, FIB-SEM, AES, XPS, ToF-SIMS) to determine:
 - Nature of impurity-ECM interactions,
 - Presence of alteration phases formed from any reactions
 - Surface adsorption

Walk-in ventilated lab space and multiple work stations are used at PNNL

Multiple button cells in furnace, each with individual gas flow and electrical controls

Pacific Northwest NATIONAL LABORATORY

ECM Flue Gas Contaminant Tolerance: SO₂

- Polishing equipment upstream of ECM reduces SO₂ concentration in the flue gas (cathode gas) to <1 ppm
- ECM stable operation has been verified with 0.4 1 ppm SO₂ in the cathode without significant performance loss in two 600+ hour tests

ECM Flue Gas Contaminant Tolerance: Hg

- Stable operation was observed with 250 ppb Hg in ECM cathode gas (500 times higher than typically present in coal plant flue gas) during ~1,100 hour test
- Test data analysis confirmed no accumulation of Hg in ECM components

ECM Flue Gas Contaminant Tolerance: Selenium

• ECM displayed stable operation with 10 ppb Selenium (20-30x higher than expected levels) for over 860 hours of exposure

ECM Flue Gas Contaminant Tolerance: Chlorine

 ECM displayed no performance loss with exposure to 200 ppb HCI (10-20x higher than expected levels) for over 900 hours

- Based on FCE's prior experience:
 - ECM materials are not expected to be degraded by NOx in flue gas
 - CEPACS system offers co-benefit of NOx reduction

Reaction Mechanism by which NOx is removed from the Flue Gas (cathode-side), transferred to the anode-side along with CO₂, and subsequently destroyed

ECM NO_x Removal Capabilities

 ECM Capability for NO_x Destruction Remains > 70% at High Inlet NO_x Concentration (200 ppm) During Carbon Capture under System Conditions

Bench-Scale Demonstration System

CEPACS Demonstration system designed, assembled, and ready for testing

- 100 tons/year liquid CO₂ product
- Approximately 9 kW power production

Accomplishments and Summary

- The Technical and Economic Feasibility Study (T&EFS) of a CEPACS system to separate 90% of CO₂ from the flue gas of a Reference Plant (550 MW PC) has verified:
 - Incremental cost of electricity (COE) of 35% and cost of CO₂ captured of \$38/tonne CO₂ (2011 USD)
 - Excess water available for export
- Large-area ECM laboratory tests verified:
 - High CO₂ flux (>120 cc/m²/s) while separating >90% of CO₂ from simulated PC or NGCC plant flue gas
 - Capability to destroy 70-80% of NO_x from flue gases

Fuel Cell Manufacturing Facility, Torrington, CT

- Stability of CO₂ flux as the membrane ages
- Contaminants tests indicated ECM is stable in the presence of S, Se, Cl, and Hg levels expected from a conventional wet-FGD polisher
- The Technology Gap analysis indicated that available commercial equipment can be used in CEPACS system with no R&D needed for BOP
- ECM is suitable for a wide range of carbon capture applications: Enhanced oil recovery, SAGD Tar Sands, coal and natural gas power plants, and industrial sites (cement factory & refineries)
- Next step: Complete bench-scale CEPACS demonstration system for 100 tons/year carbon capture

ECM Carbon Capture from Coal Plants supported by DOE/NETL (Award Number: DE-FE0007634)

Guidance from NETL team: Michael Matuszewski, Shailesh Vora, José Figueroa, Lynn Brickett, and others at NETL

