SRI International

Development of a Precombustion CO₂ Capture Process Using High-Temperature PBI Hollow-Fiber Membranes

2014 NETL CO₂ Capture Technology Meeting August 1, 2014 Pittsburgh, PA.

Project Overview

 Cooperative agreement grant with U.S. DOE-NETL (DE-FE0012965)

- Period of Performance:
 - Budget Period 1: 10-1-2013 through 7-31-2015 (Definitized on March 9, 2014)
 - Budget Period 2: 8-1-2015 through 10-30-2016
- Funding:
 - U.S.: Department of Energy: \$2.25 million
 - Cost share: \$0.56 million
 - Total: \$2.81 million
- NETL Project Manager:
 - Ms. Elaine Everitt

Project Team

<u>SRI:</u>

PBI Membrane Fabrication Research;

Membrane Testing

PBI Performance Products, Inc.

PBI polymer Manufacturer

Generon:

Membrane Fabrication Scale-up;

Module Fabrication

Enerfex:

Membrane System Modeling

Energy Commercialization

Commercialization Analysis NCCC:

Gasifier Facility Test Site

EPRI:

Electric Power Industry Perspective

<u>NETL:</u>

Funding and technology oversight

Project Objectives

Primary Objectives:

- To evaluate, at a bench-scale size, a technically and economically viable CO₂ capture system based on a hightemperature PBI polymer membrane separation system.
- To optimize the process for integration of that system into an Integrated Gasification Combined Cycle (IGCC) plant.
- Specific Objectives
 - Collect laboratory data for separating hydrogen from simulated synthesis gas using PBI-based hollow fiber membranes.
 - Fabrication of membrane modules of 50 kWth equivalent of a shifted gas from an oxygen-blown gasifier using equipment of industrial relevance.
 - Collect design and steady-state performance data for membrane modules using syngas from an operating coal gasifier.
 - Transfer the membrane fabrication technology to an industrial firm that specializes in the manufacture of hollow fiber membranes.
 - Estimate the cost of CO₂ capture from precombustion gas streams.

Project Schedule

						20	14			20	15			2016	•	
Task	Start Date	End Date	Cost \$	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
BP1 and BP2	4/15/2013	10/31/2016			I											
Task 1.0 - Project Management and Planning	4/15/2014	7/31/2015	\$153,237													
Task 2-0: Establish Performance Database	4/15/2014	7/31/2014	\$1,355,850													
Sublask 2.1 - Generate Membrane Module for Testing	7/1/2014	3/3/12015														
Sublask 2.2 - Commission a 50 kWth Membrane Skid	10/1/2014	12/30/2014														
Sublask 2.3 - Generate Performance Database	1/1/2015	7/30/2015														
Sublask 2.4 - Modeling of the Membrane Performance	8/1/2014	6/31/2015														
Continuation Report Submission	4/1/2015	4/30/2015														
BP2: Field Testing of the Bench-Scale Unit	8/1/2015	10/31/2016														
Task 1.0 - Project Management and Planning	8/1/2015	10/31/2016	\$1 03,489													
Task 3.0 - Modification of the 50 kWth Test Unit for																
the Field Test	8/1/2015	11/1/2015	\$369,487													
Sublask 3.1 - Test Unit Modification	8/15/2015	10/31/2015														
Sublask 3.2 - Test unit HazOp and Safety Review	9/15/2015	10/15/2015														
Task 4.0 - Operation of the 50 kWth Test Unit	11/1/2015	10/1/2016	\$463,807													
Sublask 4.1 - Test Unit Start-up	11/1/2015	12/30/2015														
Subtask 4.2 - Development of a Test Plan	11/1/2015	12/30/2015														
Sublask 4.3 - Paramebic Testing	1/1/2016	6/1/2016														
Sublask 4.4 - Long Duration Testing	7/1/2016	9/1/2016														
Task 5.0-Conduct Process Design and Engineering	41410045	7/4/2040	\$400 CO.4													
SWOY	4/1/2015	//1/2016	\$130,604													
Analyses	7/1/2015	10/1/2016	\$192,838)
Task 7.0 - Dismantling and Removing the	1112010	10.1.2010	\$102,000													_
Slipstream Test Unit	10/15/2016	10/30/2016	\$44,190													
Final Report	10/15/1026	10/30/2016														

Why the High Temperature Membrane Separation of CO₂?

Characteristics of PBI Membranes

- PBI has attractive combination of throughput and degree of separation
- Thermally stable up to 450°C and sulfur tolerant
- Tested for 1000 h at 210°C by at SRI

Advantages of Membrane-Based Separation

- No need to cool syngas; Increased mass flow to gas turbine
- Reduced CO₂ compression costs
- Emission free, i.e. no solvents
- Decreased capital costs
- Low maintenance

A Significant Size Advantage of Hollow Fiber Membranes

7

Views of Spinning Line at SRI

Dense Layer Optimization

Dense layer $= \sim 1$ micron

Dense Layer

Dense layer = ~ 0.1 micron

Support Pore Structure Optimization

Fabricated Hollow Fibers

Improving Fiber Toughness

Fiber winding on several size mandrels

2.5-in diameter

0.75-in diameter 0.25-in diameter tube

H₂/CO₂ Selectivity of and H₂ Permeance of Fibers at 225°C

Long-Term Testing

Preliminary Economic Analysis: PBI Approaches the DOE Goals

CO ₂ capture: 3.3 Million tonnes/yr.	Project Cases								
				CO ₂	CO ₂				
			CO₂ and H₂S	Capture w/PBI &	Capture w/PBI no				
		No	Capture	H₂S	H₂S				
	Units	Capture	w/Selexol	w/Selexol	removal				
Power Production @100% Capacity	GWh/yr	5,455	4,461	4,943	5,035				
Power Plant Capacity	cents / kWh	4.50	6.19	5.49	5.02				
Power Plant Fuel	cents / kWh	1.90	2.47	2.31	2.26				
Variable Plant O&M	cents / kWh	0.78	1.00	0.92	0.91				
Fixed Plant O&M	cents / kWh	0.60	0.79	0.71	0.70				
Power Plant Total	cents / kWh	7.78	10.45	9.43	8.89				
Cost of Electricity* (COE)	cents / kWh	7.78	10.45	9.43	8.89				
Increase in COE (over no capture)	%	n/a	34%	21%	(14%)				

* Separation and Capture Only

Plant operating life: 30 years; Capacity Factor: 80%; Capital charge factor: 17.5%

Capture with Selexol uses slightly different parameters than NETL cases.

BP 1: Fabrication of PBI Hollow Fiber membrane for Bench-Scale Testing

- Fabricate PBI hollow fiber modules for tests with a bench-scale system.
- Engage the expertise of Generon that specializes in the manufacturer of hollow fiber membranes.
- Transfer technical know-how of PBI fiber spinning to Generon.
- Evaluate, at a bench-scale level, the thickness of the selective and support layer as they affect the separation of the gas components.
- Evaluate seal integrity at the high temperature and pressure of shifted syngas.
- Use the test results to model the membrane performance.

50 kWth Membrane Skid

- An existing 50 kW_{th} bench-scale membrane skid will be modified to collect performance data over a range of conditions relevant for the proposed field tests.
- Fabricated under a prior DOE-funded project.
- Test at SRI facilities using simulated gas representative of a water-gas shifted syngas stream.

Photograph of the Skid for PBI Membrane Testing

Generate Performance Database

Preliminary scoping tests will be conducted with a subscale module to:

- Provide data for the optimization of the fiber spinning and module assembly processes.
- Evaluate the effectiveness of the membrane:
 - Potting material, the gas permeance, and selectivity of the PBIbased membranes.
- The 50 kWth membrane skid will be operated:
 - Temperatures up to 225°C, pressures up to 450 psig, and simulated syngas flow rates up to 1000 scfh.
- Simulated syngas tests will include:
 - Gas mixtures containing $H_2/CO_2/H_2O/CO$ with and without H_2S .

Budget Period 2 Tasks

- Task 3: Modification of the 50 kWth Test Unit for the Field Test
 - 3.1: Test Unit Modification
 - 3.2: Test unit HazOp and Safety Review
- Task 4: Operation of the 50 kWth Test Unit
 - 4.1: Test Unit Start-up
 - 4.2: Development of a Test Plan
 - 4.3: Parametric Testing
 - 4.4: Long Duration Testing
- Task 5: Conduct Process Design and Engineering Study
- Task 6: Conduct Environmental and Economic Analyses
- Task 7: Dismantling and Removing the Slipstream Test Unit

Acknowledgement

SRI International

- Gopala Krishnan, Indira Jayaweera, Anoop Nagar, Srini Bhamidi, Regina Elmore, and Palitha Jayaweera
- Generon:
 - John Jensvold, Fred Coan, and Kyle Jensvold
- Enerfex, Inc.: Richard Callahan
- PBI Performance Products, Inc.
 - Gregory Copeland and Michael Gruender
- National Carbon Capture Center: Frank Morton
- EPRI: Jeffrey Phillips
- DOE-NETL
 - Elaine Everett, Lynn Brickett, Michael Matuszewski

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank You

Headquarters: Silicon Valley

SRI International 333 Ravenswood Avenue Menlo Park, CA 94025-3493 650.859.2000

Washington, D.C.

SRI International 1100 Wilson Blvd., Suite 2800 Arlington, VA 22209-3915 703.524.2053

Princeton, New Jersey

SRI International Sarnoff 201 Washington Road Princeton, NJ 08540 609.734.2553

Additional U.S. and international locations

www.sri.com