

Development and Testing of Aerogel Sorbents for CO₂ Capture

2014 CO₂ Capture Technology Meeting Pittsburgh, Pennsylvania July 29 – August 1, 2014

Redouane Begag, *George Gould, and Shannon White Aspen Aerogels, Inc.

NANOTECHNOLOGY AT WORK

Aspen Aerogels, Inc.

- Founded in 2001
- 220 Employees
- Locations:
 - -Northborough, MA
 - (headquarters, R&D laboratories)
 - -East Providence, RI
 - (manufacturing facility)
- World's leading manufacturer of flexible aerogel blanket insulation
- "Large Scale Nanomaterial Manufacturing"
- ISO 9001-2000 (BVQi certified)

aspen aerogels

Project Overview

Develop and bench-scale test an advanced aerogel sorbent for post-combustion CO₂ capture from coal-fired power plants

Develop Compatible SOx resistant barrier

aspen aerogels

Project Periods

	BP#	Description
\langle	BP1 (2013 – 2014)	AFA Sorbent Development
		Pellet Development and Optimization
		Sorbent Evaluation
	BP2 (2014 – 2015)	Aerogel Bead Fabrication
		Coating Development
		Coated Pellet (and Beads) Evaluation
	BP3 (2015 – 2016)	Pellet (or beads) Production
		Fluidized Bed Evaluation
		Techno-Economic Evaluation
		Environmental Health and Safety Evaluation

aspen aerogels

Sorbent optimization – bench scale production

Sorbent testing – bench scale evaluation

Sorbent pelletizing – Sorbent flue gas poisoning optimization

Period of Performance:

> 10-1-2013 through 09-30-2016

G Funding:

- U.S.: Department of Energy: \$2.99M
- Cost share: \$ 0.77 million
- Total: \$3.76 million

aspen aerogels

Amine Functionalized Aerogel (AFA) Development

High surface/high porosity material

- Hydrophobic to enhance CO₂ adsorption selectivity and stability
- Low specific heat, thus low energy regeneration
- High temperature stability

Good routes for manufacture at reasonable cost and at high volume

Project Objectives

- 1. Optimize sorbents for improved CO₂ capacity and poisoning resistance.
- 2. Convert optimized sorbent into durable pellet and bead form.
- 3. Produce the best candidate sorbent form in larger quantities for fluidized bed testing.
- 4. Assess the sorbent in fluidized bed bench-scale testing.
- 5. Conduct a technical and economic assessment of the sorbent technology and process.

Technical Progress

Amine Functionalized Aerogel Optimization

Aspen focused on improving the total CO_2 capacity of its sorbents while trying to maintain their lifetime/cycling stability, by:

- Adjust % amine loading
- Increase the density of the aerogel sorbent (> 0.25 g/cc).
- Optimize chemically grafted amine functional aerogel formula.

Sol-Gel/Aerogel process

Total CO₂ Capacity - The University of Akron (UA)

T adsorp. = 40 °C (100% dry CO_2), 10 min. adsorption T desorp. = 100 °C (ambient), 10 min. desorption

aspen aerogels

IJ-modified class chosen for further work

Aerogel Sorbent Evaluation at ADA

Sorbent Cyclic Stability & CO₂ / H₂O Adsorption Rate Comparison

aspen aerogels

Stable for up to 250 adsorption/desorption cycles under flue gas conditions of $18.5\% CO_2$, $4\% H_2O$, and 77.5% N_2 - **exceeding the 100 cycle BP1 target.**

After 3.9 minutes, CQA12 adsorbs:

- 1 wt. % H₂O
- 10.54 wt. % CO₂

The sorbent cycling time may be reduced to control moisture loading and still maintain high CO_2 loading performance. \rightarrow Smaller absorber system volume?

Pelletization Process Optimization - UA

- The CO₂ capture capacities of the pellets prepared with UA Standard binder solution can retain over 90% of that of the powders.
- CO₂ capture retention for the pellets depends on binder/aerogel ratio and density of active amine sites.

Attrition Index Measurement - UA

- CQA12 pellets were subjected to ASTM D5757 (Standard Test Method for Determination of Attrition of FCC Catalysts by Air Jets).
- Initial size ~ 500 µm.
- % mass attrited measured after 3 hours

WORK

AT

Two of UA's binder recipes gave <2% attrition.</p>

Modified E series binding solution recipe will be applied as an SO₂ resistance coating.

NANOTECHNOLOGY

Cyclic Stability of CQA12 Pellets - ADA

CQA12 Pellet was tested for cyclic stability using TGA.

- Retained > 88% of the total CO₂ capacity of CQA12 powder.
- Kinetics were fast during CO₂ adsorption for the first 3 cycles as well as the last 3 cycles (cycles 71 – 73).

Improved stability achieved in BP1 at 3x improvement of capacity vs SBIR program best results

- ➢ Cyclic stability (<u>40°C − 130°C</u>)
- Lost ~40% of initial delta CO₂ working capacity after 450 cycles.

Aerogel Sorbent Beads - Study Initiation

- The optimum aerogel formulation (CQA12) was used to make small quantities of beads with different sizes (<500 microns – 3 mm)</p>
- May offer alternative pathway to higher working capacity and faster kinetics without pelletization costs
- Further work on optimization in BP2.

aspen aerogels

Beads will be optimized for better mass transport to increase working capacity

SO₂ Resistant Coating - Preliminary Study

- The SO₂ accumulation of adsorbed SO₂ is suppressed on SRE15-1 coated sorbent compared to the other two samples.
- The composition of the coating has a critical impact on the resistance to SO₂.
- Further studies on optimizing the composition of SO₂ resistant coatings in BP2.

Change of the IR peak area for the sulfate peak (peak center is 981 cm⁻¹)

BP1 Achievements and Planned/Actual Completion Dates

– Through Month 9

	Verification Method	BP1 Target	Planned completion date	Actual completion date
	Total CO ₂ adsorption capacity ⁽¹⁾	> 12 wt. % (2.72 mmolCO ₂ /g-sorb)	03/31/2014	2/17/2014 Exceeded Target (19.9 wt.%)
Optimized	Working CO ₂ capacity ⁽¹⁾	> 6 wt.% (1.36 mmolCO ₂ /g-sorb)	03/31/2014	2/17/2014 Exceeded Target (7.8 wt.%)
AFA Powder	Adsorption/desorption kinetics	Fast ⁽²⁾	03/31/2014	2/25/2014 Medium-Fast at 40 - 100 °C ⁽³⁾ Fast at 40 - 110°C ⁽³⁾
	Water adsorption	< 1 wt. % @ 40 °C	05/31/2014	05/26/2014 Met Target ⁽⁴⁾
	Cycling stability (CO ₂ adsorption/desorption)	Stable over 100 cycles.	05/31/2014	3/21/2014 Exceeded Target (stable over 250 cycles)

1): Adsorption @ 40 °C, Desorption @ 100 °C

2): < 15 min. to reach 80% of total CO₂ capacity at adsorption temperature

3): Medium-fast (15.58 min.), Fast (11.43 min.)

4): Water adsorption varies as a function of the hydrophobicity of the sorbent.

BP1 Achievement and Planned/Actual Completion Dates

- Through Month 9

	Verification Method	BP1 Target	Planned Completion Date	Actual Completion Date
	CO ₂ adsorption capacity ⁽¹⁾	> 9% wt. (2.04 mmolCO ₂ /g-sorb)	06/30/2014	06/06/2014 Exceeded Target (17 wt.%)
Optimize AFA	Density (g/cc)	> 1.2 g/cc	06/30/2014	06/06/2014 ~ 1.3 g/cc Achieved
Pellets	Size (micron)	300 - 350	06/30/2014	06/06/2014 Met Target (300 -350 mm)
	Attrition Index	3% (2)	06/30/2014	06/18/2014 Exceeded Target (< 2%)
Develop SO ₂ coating resistance	the preliminary rest the poisoning re	sults should demonstrate esistance against SO ₂	06/30/2014	Initiated on 06/15/2014
Initiate AFA bead development	Assess aeroge per	el beads CO ₂ capture formance.	06/30/2014	Initiated on 04/12/2014

1): After optimization of aerogel/binder ratio.

2): loss under fluidizing condition for 3 hours.

aspen aerogels

NANOTECHNOLOGY AT WORK

BP1 Conclusions

- > All milestones have been met and completed on schedule or ahead of schedule.
- > Three methods of amine incorporation were investigated.
- > Optimized AFA sorbents with a reduced delta T for adsorption/desorption (40 100 °C)
- Best performing sorbent (CQA 12) has demonstrated:
 - $\checkmark \qquad \text{High CO}_2 \text{ total capacity (> 20 wt.\%)}$
 - $\checkmark \qquad \text{High CO}_2 \text{ working capacity (8 wt.%)}$
 - ✓ Stable for up to 250 adsorption/desorption cycles
- \checkmark High sorbent selectivity \rightarrow cycling time can be reduced to control moisture loading.
 - Several process advantages (smaller quantities of sorbent, reduced size of the absorber units, reduced capital costs, less parasitic loss *etc.*).
- Optimized pellet fabrication up to 90% CO₂ capture retention and low attrition index (< 2%).</p>
- Project team initiated two important studies that will continue during BP2:
 - \checkmark SO₂ resistant coating development
 - Amine Functionalized Aerogel bead development

Project Funding (DE-FE0013127):

U.S. Department of Energy (DOE-NETL)

DOE-NETL Project Manager - I. Andrew Aurelio

Team Acknowledgements:

- Aspen Aerogels Inc. (R&D group)
- ADA-ES (M. Lindsay, W.J. Morris)
- University of Akron (S. Chuang, E.S. Mojica, L. Zhang and U. Tumuluri)

NANOTECHNOLOGY AT WORK