

An Advanced Catalytic Solvent for Lower Cost Post-combustion CO₂ Capture in a Coal-fired Power Plant

Award # DE-FE0012926

<u>Cameron Lippert</u>, James Landon, Kun Liu, Moushumi Sarma, Rafael Franca, Guojie Qi And Kunlei Liu

University of Kentucky, Center for Applied Energy Research

http://www.caer.uky.edu/powergen/home.shtml

Email: cameron.lippert@uky.edu

CAER Center for Applied Energy Research UK

Corrosion

- Traditional cell
- Electrochemical methods determination

Power Generation & Utility Fuels

- Biofuels & Environmental Catalysis
- Carbon Materials
- Electrochemical Power Sources
- Clean Fuels and Chemicals
- Environmental Remediation

Catalyst Development

- Post-combustion CO₂ capture (gasification)
- Natural gas sweetening
- CO₂ utilization

Pilot Plant

- · Coal-derived flue gas
- Solvent & process testing

Solvent Development

- Blends & exotic amines
- ASPEN modeling
- Structure-property relationships

- Degradation
- Kinetics
- Thermodynamics

Membrane Separations

- •Zeolite membranes
- Solvent enrichment

Electrochemistry

- Solvent enrichment
- Water treatment

Analytical Methods Development

- IC-MS, GC-MS, LC-MS (TOF-ESI)
- Degradation analysis
- Nitrosamine identification

Project Overview

Overall Objective: Develop a Post-combustion integrated hybrid (membrane/solvent) process with an advanced catalyzed solvent.

Project Details

- Benefit from multiple CAER technologies: solvent; catalyst, membrane, process
- Project cost:
 - DOE share:\$2.97MCost share:\$742K
- **Period performance:** 10/1/2013 9/30/2016

Project Objectives

• Develop a low-cost CO₂ capture system via Integration of multiple CAER technologies to verify an advanced catalytic solvent with integrated membrane dewatering for solvent enrichment in our 0.1MW pilot plant (Proof of concept)

CAER Center for Applied Energy Research	CMRG	SMG	WorleyParsons resources & energy
Project managementCatalytic solvent testingASPEN modelingMembrane synthesis	Technical support	PPE recommendation EH&S analysis	Front-end engineering supportTechno-Economic Evaluation

Catalytic Solvent Process

Technology Fundamentals

k_{obs} impacts PFO calculation

$$k_{obs} = k[amine] + k'[cat]$$

$$k_{g,PFO}' = \frac{\sqrt{D_{CO2}.k_{obs}}}{H_{CO2}}$$

$$k_{g,PFO}' \alpha \sqrt{k_{obs}}$$

Higher the value of k_{obs} higher the mass transfer rate

Pseudo first order approximation

$$\left(k_{g,PFO}' = \frac{\sqrt{D_{CO2}.k_2.[amine]}}{H_{CO2}}\right)$$

Achieve rate enhancement at higher carbon loadings

CO₂ Capture Chemistry

$$R \searrow_{O^{-}}^{H} \bigvee_{O^{+}}^{O} Q \qquad H \searrow_{N^{+}}^{H} \searrow_{R}^{H}$$

carbamate salt

- Parallel process:
 - Typical amine-based chemistry
 - ➤ Catalytic CO₂ hydration to bicarbonate

Development Efforts: Catalysts

Catalyst	рН	K _{cat} (M ⁻¹ s ⁻¹)	Solvent	Method	
CA (Zn)	7	1,100,000	Carbonate buffer	Stop Flow	
CA(Co(III))	7	305,000	Carbonate buller	Stop-Flow	
	7.5 564 H		HEPES	Stop-Flow	
Zn-Cyclen	8.5	2154	AMPSO	Stop-Flow	
	9.11	3012	CHES	Stop-Flow	
	7.5	24	HEPES	Stop-Flow	
Zn-Cyclam	9	126	AMPSO	Stop-Flow	
	9.8	172	CHES	Stop-Flow	
Zn-NTBSA	9.5	3300	Carbonate buffer Stop-Flow		

CAER Catalyst Development

- Incorporate key features of CA without the limitations: Nucleophilic hydroxo, facile bicarbonate dissociation, Lewis acidic metal center
- Aqueous-amine soluble and stable
- •Function under "real" conditions (14% CO₂, concentrated amines)

Development Efforts: Catalysts

Improved Catalyst

- Increased activity in MEA (~30% enhancement)
- Retains activity after heating at 145 °C for 150h
- Simple catalyst preparation; suitable for scale-up (~25% more \$ than MEA)

Development Efforts: Catalysts

Catalyst	Solvent	°C Time (hour)		% Activity Lost
-	MEA	100	6	~5
C1P	MEA	100	6	~5
C3P	MEA	100	6	~100
C3I	MEA	100	5	~100

C5c	MEA	145	150	~5

Improved Catalyst

- Increased activity in MEA (~30% enhancement)
- Retains activity after heating at 145 °C for 150h
- Simple catalyst preparation; suitable for scale-up (~25% more \$ than MEA)

Catalysts Properties in MEA

Thermal Stability

Catalytic Solvent CO₂ Capture

Advantages

- Potential for reduced capital cost for post-combustion CO₂ capture
 - Increased scrubber kinetics (smaller absorber)
- Potential for reduced energy consumption compared to reference case (MEA)
 - High α; cyclic capacity
 - High stripper temperatures/pressure
 - Less solvent make-up rate

Challenges

- Transition from lab- to bench-scale process under real flue gas conditions
- Solvent oxidation via catalyst addition
- Integration with multiple technologies

Design and Work Plan

Progress and Current Status

Original seed - 10 sec

S-4800 15.0kV 18.7mm x45.0k SE(U)

Membrane Separations

MTR Gas Membrane:

- MTR gas membrane separation unit has been sourced and delivered on June 30, 2014
- Membrane unit is being installed with shake-down testing slated for August 2014

Membrane Dewatering:

Tris	ep X-20	Zeolite membrane		
Time/ min	Percent Dewatered	Time/hours	Percent Dewatered	
0	> 20	1	53%	
10	> 20	2	8%	
20	> 20	-	-	
30	> 20	-	-	

Conditions	Trisep X-20	Zeolite
Temperature (°C)	25	100
Pressure (psi)	1000	70
Flow rate (ml/min)	30	30

The TriSep X-20 anti-fouling membrane (containing an uncharged surface layer) successfully dewatered the CAER-B3 solvent. Extended dewatering lifetime is currently under investigation.

CAER zeolite surface after failure

Project Schedule and Milestones L.K.

	Previous work	Current Project				Future Develo	opemt
Yr	2011-2013	2013	2014	2015	2016	2017-2020	>2020
BP	-	1	1/2	2/3	3	-	-

Fundamental Development of concept by CAER

Slipstream ~2MW

~20 MW

Laboratory Validation and Scale-up

Solvent Optimization

 Milestone: VI F and model regression

Membrane Enrichment

Milestone: 5% enrichment over 5hr

Catalyst Scale-up

- Milestone: Develop method to produce 50g/batch
- Milestone: PPE recommendation & front-end engineering analysis

Parametric Testing on 0.1 **MWth Unit**

- Catalyst Production
- Milestone: 500g produced
- Parametric Testing
- Milestone: 100hr runs with and without catalyst completed
- Membrane Enrichment

 Milestone: 10% enrichment over 100hr and module design

Verification Run

Unit

• Milestone: 500hr verification run

Verification Testing on 0.1 MWth

Membrane Enrichment

- Milestone: Unit integrated and 20% dewatering observed
- Techno-Economic Analysis
- Milestone: Favorable TEA
- EH&S
- Milestone: Favorable EHS assessment

Budget Periods and Tasks

ВР	Task	Name				
	1.0, 7.0, 12.0	Project Management and Planning				
	2	Collection of Physical Properties and Solvent Optimization				
	3	Carbon Enrichment Performance Evaluation with Selected Solvent				
1	4	Catalyst Scale-up				
	5 Front-end Engineering Analysis					
	6	Assessment for PPE Requirement				

Budget Period	Task No.	Milestone Description	Planned	Actual	Verification Method
1	1	1A. Updated Project Management Plan	3/31/14	10/30/13	PMP file
1	1	1B. Kickoff Meeting	11/14/13	12/4/13	Presentation file
1	2.2	Solvent kinetic data collected for modeling including: no less than 30 data points collected for VLE regression verification	6/30/14	5/31/14	Quarterly report
1	2.3-4	Completion of mass transfer and kinetic data collection on CAER-B3 solvent	9/30/14		Quarterly report
1	3.1	Membrane shown to dewater CAER-B3 solvent by at least 5% over 5 hours	8/31/14		Quarterly report
1	3.2	Completion of experiment of MTR module for higher CO_2 loadings and lower stripper energy costs shown in 30 wt % MEA and CAER-B3 system in 0.1 MWth bench-scale test unit.	8/31/14		Quarterly report
1	3.3	Examination of alternative polyamide membranes from TriSep for post scrubber solvent enrichment	9/30/14		Quarterly report
1	4	Methodology developed for synthesis of > 50 g/batch of catalyst.	1/31/14	1/31/14	Quarterly report
1	4	At least 5% enhancement in mass transfer verified compared to the uncatalyzed	9/30/14		Quarterly report
1	5	Technical support and input from WP received regarding cost of chemicals, membrane, and flow diagram received.	7/31/14		Quarterly report
1	6	Completion of preliminary health and safety analysis on proposed solvent	4/30/14	4/30/14	Topical report to DOE

Acknowledgements

The work presented here was made possible through funding by:

- The U.S. DOE/ National Energy Technology Laboratory
- Carbon Management Research Group: Duke Energy, EPRI, LGE&KU, DEDI, AEP

ATES OF A	CAER Center for Applied Energy Research	CMRG	SMG	Worley Parson resources & energy
Lynn BrickettMike MatuszewskiJose Figueroa	•Heather Nikolic •Jesse Thompson •Lisa Richburg •Rachael Burrows •C. Brandewie •Naser Matin •Collin Dunn •Reynolds Frimpong •Payal Chandan	 John Moffett David Link Michael Manahan Brandon Delis John Rogness Abhoyjit Bhown Curtis Sharp 	Clayton Whitney Sarah Carty	Mike Bartone Vlad Vaysman

