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Key Idea: 
 

Combine: 

(i) state-of-the-art supported amine  

adsorbents, with 

(ii) a new contactor tuned to 

 address specific weaknesses of  

amine materials, 

to yield a novel process strategy 



Ideal temperature swing adsorption 

1000 µm 

RP Lively et al., Ind. Eng. Chem. Res., 2009, 48,  7314-7324 

Bundle of 40 fibers in a 

1.5’ module at GT 

Hollow Fiber Contactor:  

4 
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Hollow Fiber Contactor:  

Key Experimental Tasks: 

 

1) Spinning of high solid content (50-66 volume%), flexible hollow fibers, using low 

cost commercial polymers (e.g. cellulose acetate, Torlon®). 

 

2) Incorporating amines into composite polymer/silica hollow fibers. 

 

3) Building and demonstrating RTSA systems for CO2 capture from simulated flue 

gas. 

 

4) Assessing the impact of operating conditions on deactivation via (i) oxidation, (ii) 

SOx exposure, (iii) NOx exposure. 

 

5) Constructing a barrier lumen layer in the fiber bore, allowing the fibers to act as a 

shell-in-tube heat exchanger. 

 

6) Demonstrating steady-state cycling of multi-fiber module with heating/cooling. 

 



Post-Spinning Infusion:  
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processing 

1) Spinning of high solid content (50-66 volume%), flexible hollow fibers 

2) Incorporating amines into composite polymer/silica hollow fibers. 

 

 Y. Labreche et al., Chemical Engineering Journal, 2013, 221, 166-175. 

 F. Rezaei et al., ACS Applied Materials & Interfaces, 2013, 5, 3921-3931. 

 Y. Fan et al., International Journal of Greenhouse Gas Control, 2014, 21, 61-72. 



4) Assessing the impact of operating 

conditions on deactivation via (i) 

oxidation, (ii) SOx exposure, (iii) NOx 

exposure. 

 

-- conditions whereby oxidation via 

residual oxygen in flue gas can be 

avoided identified 

 

-- equilibrium and dynamic sorption 

measurements of NO, NO2, SO2 

completed 

 

-- single component and 

multicomponent sorption studies 

 

SOx/NOx Experiments:  

F. Rezaei et al., Industrial & 

Engineering Chemistry Research, 

2013, 52, 12192-12201. 

 

F. Rezaei et al., Industrial & 

Engineering Chemistry Research, 

2014, in press.  

SOx/NOx studies facilitated by support of Southern Company. 



4) Assessing the impact of operating

conditions on deactivation via (i) 

oxidation, (ii) SOx exposure, (iii) NOx 

exposure. 

-- NO2, SO2 adsorb strongly, but have 

modest impact at low concentration 

-- saturation capacity loss observed 

-- high concentration of gases (200 

ppm) cause significant capacity loss 

-- deactivated fibers can be stripped of 

amine and recharged in the field for full 

capacity regeneration 

SOx/NOx Experiments: 
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Hollow Fiber Contactor as Heat Exchanger:  

5) Constructing a barrier lumen layer in the fiber bore, allowing the fibers to act as a 

shell-in-tube heat exchanger. 

 

Two approaches: 

 

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through 

fibers 

 

 Sample  He permeance (GPU) 

CA/Silica 72,200 (25 psi) 

CA/Silica/Neoprene®/TSR-633 3.4 

-- Large decrease in mass flux from bore to shell     

   with lumen layer = good barrier layer 

Y. Labreche et al., ACS Applied Materials & Interfaces, 2014, submitted. 

 



Hollow Fiber Contactor as Heat Exchanger:  

5) Constructing a barrier lumen layer in the fiber bore, allowing the fibers to act as a 

shell-in-tube heat exchanger. 

 

Two approaches: 

 

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through 

fibers 

 - Disadvantage – fibers can become clogged by latex, requires careful  

 handling of latex 

 

(ii) Dual layer fiber spinning – spin the lumen layer when initial fiber formed 

 

 - Advantage – highly scalable synthesis when poly(amide-imide)  

 like Torlon® employed 

 

 - Main fiber: porous Torlon® containing 50-60 wt% silica;  

   Lumen layer: dense Torlon®; post-treatment with PDMS gives excellent  

   barrier properties  

 

 



Hollow Fiber Contactor as Heat Exchanger:  

Lab scale heat capture efficiency during 

adsorption:  ~72% • Torlon®, commercially available 

 

• Improved thermal & chemical 

stability 

 

• Excellent barrier properties for 

both water and gases 

 

• No need for problematic latex 

post-treatment 

Y. Fan et al.,  

AIChE Journal, 2014, submitted. 

 

Y. Labreche et al.,  

Polymer, 2014, in preparation. 



Fiber Cycling – Model and Realistic Conditions:  

6) Demonstrating steady-state cycling of multi-fiber module with heating/cooling. 

  

Flue gas composition:  35 oC, 1 atm 

~ 13% CO2, ~13% He (Inert tracer),  

6% H2O, balance gas N2 

 

 

36 inch  

Fiber module 
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CO2 Sorption in Uncooled Generation 2 Fibers: 



Generation 3 Fibers: 

Dynamic process modeling and system technoeconomic analysis suggest 

there are several factors to lowering costs: 

 

(i) Improved sorption capacities [pseudo-equilibrium (qpe), 

breakthrough (qb), swing capacities (qs)] 

 

(ii) Improved process configuration allowing for enhanced heat 

management without integrating with power plant 



Generation 3 Fibers: 

Dynamic process modeling and system technoeconomic analysis suggest 

there are several factors to lowering costs: 

 

(i) Improved sorption capacities [pseudo-equilibrium (qpe), 

breakthrough (qb), swing capacities (qs)] 

 

(ii) Improved process configuration allowing for enhanced heat 

management without integrating with power plant 

 

    (mol/kg fiber)    qpe                qb          qs 

 

Generation 1 fibers:     1.1       0.5         0.30 

 

Generation 2 fibers:      1.5       1.1         0.65 

 

Generation 3 fibers:      2.0       1.3           0.75 

                

     (260% increase in  qb  in 2 years) 



 Adsorption                     = 32 s 

 Self Sweeping/Heating  = 60 s 

 N2 sweeping                  = 10 s 

 Cooling                          = 35 s 

 

Cycle Time = 137 s 

 

Parameter Estimation 

& Model Validation 

from Experiments 

Process Analysis & 

Parametric Studies 

Model Development   

Input to Design of 

Experiments 

Model Development (Single Gen 2 Fiber Modeling): 

Cyclic steady state simulation 

F. Rezaei et al., Chemical Engineering Science, 2014, 113, 62-76.  

 



  Model predicts increase in breakthrough 
capacity due to decrease of mass transfer 
resistance 

 Smaller silica particles to be employed 
experimentally. 

Overall mass transfer resistance vs. sorbent size 

Process Improvement from Modeling : Effect of Sorbent Size: 

Hollow fiber schematic with different mass 
transfer resistance components 



Overall approach: 
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Process Flow Diagram - Cycle Steps: 
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CO2 Balance: 

CO2 purity of 95% and recovery of 90% per pass 

Year 2 

 

Year 3 

7% 

20% 

73% 



The current technoeconomic evaluation employs a similar methodology to 
the first and second year: 

• Outputs from cyclic steady state fiber model (e.g., tempered water flow 
rates and temperatures) were abstracted and used as inputs to steady-
state process model 

• Heat and material balances were used to size and select equipment 

• Capital costs, operating costs, and technoeconomic metrics were 
calculated according to DOE methodology 

 

Equipment pricing was improved over year 1: 

• Equipment cost curves were developed to accommodate more rapid 
evaluation of process options by overall modeling team. 

• Aspen In-plant Cost Estimator replaced PDQ$ as the equipment cost 
estimating software. 

 

Year 2, CO2 recovery target  (93%) was met, but CO2 purity was not (82%). 

Year 3, CO2 recovery (90%) and purity targets met, (95%). 

 
 

Technoeconomic Evaluation Methodology:  



DOE Design Basis:

• Specified in solicitation, similar but not identical to DOE 
baseline reports

• 550 MWe net, 90% CO2 capture
• Supercritical steam cycle
• Inlet flue gas conditions and composition
• Outlet CO2 at 95% purity and 15272 kPa (2215 psia)
• Cooling water supply, return, and approach temperatures
• Steam delivery conditions:

– IP/LP crossover
– 395 C (743 F) and 1156 kPa (168 psia)
– Thermal energy penalty of 0.0911 kWh/lb



Energy and Escalation Results Year 3: 

Description Units Value 

Escalation Factor - 1.532 

Energy     

  Sorption enthalpy MWth 183.2 

  Sensible heat MWth 1006 

  Total enthalpy per sorption or desorption step MWth 1190 

  Main heater duty MWth 550 

  Main cooler duty MWth -563 

  Intraprocess heat recovery % 

Steam usage kg/h 819000 

Derate     

  Direct Electrical Derate MWe 110.8 

  Steam Derate MWe 252.6 

  Steam Turbine Energy Recovery MWe -71.0 

  Total Derate for CO2 Capture MWe 292 



Escalated Capital Costs: 

Description Units Year 3 Comments 

Total purchased equipment 

costs (PEC) 
MM$ 221.6 

                                                     

 1850 modules 

Fibers MM$ 135.9  450,000 fibers/module 

CO2 capture MM$ 57.6   

CO2 compression MM$ 28.1   

Process Plant Cost (PPC) MM$ 641.5 PPC = PEC + Direct Costs 

Total Plant Cost (TPC) 

MM$ 1078.5 

TPC = PPC + Engineering + 

Process Contingency + Project 

Contingency (30%) 

Total Plant Investment (TPI) MM$ 1142.6 TPI = TPC + Interest and Inflation 

Total Capital Requirement 

(TCR) 
MM$ 1175.3 

TCR = TPI + Startup + Initial Fill + 

Working Capital + Land + Others 

Annual Capital Charge 
MM$/year 205.7 

  



Technoeconomic Metrics Escalated Case: 

Description Units Year 3 Q3 

Levelized Costs of Electricity and Steam     

Levelized cost of electricity mills/kWh 154 

Levelized cost of steam $/1,000 lb 14.0 

Cost of CO2 Capture     

Total Annual Cost of CO2 Capture MM$/year 303 

Impact of CO2 Capture on Plant Efficiency     

Net Plant Efficiency without CO2 Capture (HHV) % 39.3 

Net Plant Efficiency with CO2 Capture (HHV) % 25.6 

Change in Net Plant Efficiency % -11.2 

Metrics were calculated using simplified equations specified in the solicitation.   



Summary & Future Work: 

• Rapid Temperature Swing Adsorption (RTSA) enabled by a new contactor 

combined with solid amine sorbents. 

 

• Cycle allows quasi-isothermal adsorption with significant sensible heat 

recovery due to nanoscopic shell-tube heat exchanger design. 

 

• Refined Technoeconomic analysis suggests targets for improvement. 

 -- Current parasitic load, Gen 2 fibers (1.53 escalation factor) 

 

• Refinement Approaches: 
 

 -- Gen 3 fibers = 1.43 escalation factor 
 

 -- Gen 3 fibers (VTSA, 0.33 bar desorption pressure)  

    Lower bound steam savings = 30% less heat used 
 

 -- Gen 3 fibers (VTSA, 0.33 bar desorption pressure)  

    Upper bound steam savings = 50% less heat used 
 

 -- Multi-bed adsorption 
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