Rapid Temperature Swing Adsorption using Polymer/Supported Amine Composite Hollow Fibers

Christopher W. Jones, <u>Ryan Lively</u>, Yoshiaki Kawajiri, William J. Koros, Matthew Realff, David S. Sholl *Georgia Institute of Technology*

> Katherine Searcy Trimeric Inc.

<u>Ryan Lively</u> Algenol Biofuels

Post-Combustion Sorbent-Based Capture2014 NETL CO2 Capture Technology MeetingSheraton Station Square, Pittsburgh, PATuesday, July 29, 2014

Budget:

DOE contribution:

Year 1: \$ 691,955 Year 2: \$ 847,672 Year 3: \$ 847,006 Total: \$2,386,633 (79%)

Cost Share Partners:

GE Energy:	\$ 420,000
Algenol Biofuels:	\$ 183,900
Southern Company:	\$ 33,147
Total:	\$ 637,047 (21%)

Total Budget: \$3,023,680

Project Performance Dates – October 2011 to September 2014

Georgia Institute of Technology School of Chemical & Biomolecular Engineering Key Idea:

Combine:

(i) state-of-the-art supported <u>amine</u> <u>adsorbents</u>, with

(ii) a <u>new contactor tuned to</u>

address specific weaknesses of amine materials,

to yield a novel process strategy

Hollow Fiber Contactor:

RP Lively et al., Ind. Eng. Chem. Res., 2009, 48, 7314-7324

RTSA Qualitative Cycle:

Key Experimental Tasks:

1) **Spinning** of high solid content (50-66 volume%), flexible hollow fibers, using low cost commercial polymers (e.g. cellulose acetate, Torlon[®]).

2) **Incorporating amines** into composite polymer/silica hollow fibers.

3) Building and demonstrating **RTSA systems** for CO_2 capture from simulated flue gas.

4) Assessing the impact of operating conditions on deactivation via (i) oxidation, (ii) **SOx** exposure, (iii) **NOx** exposure.

5) Constructing a **barrier lumen layer** in the fiber bore, allowing the fibers to act as a shell-in-tube heat exchanger.

6) Demonstrating **steady-state cycling** of multi-fiber module with heating/cooling.

Post-Spinning Infusion:

- 1) Spinning of high solid content (50-66 volume%), flexible hollow fibers
- 2) Incorporating amines into composite polymer/silica hollow fibers.

Y. Labreche et al., *Chemical Engineering Journal*, **2013**, 221, 166-175.
F. Rezaei et al., *ACS Applied Materials & Interfaces*, **2013**, 5, 3921-3931.
Y. Fan et al., *International Journal of Greenhouse Gas Control*, **2014**, 21, 61-72.

SOx/NOx Experiments:

4) Assessing the impact of operating conditions on deactivation via (i) oxidation, (ii) SOx exposure, (iii) NOx exposure.

-- conditions whereby oxidation via residual oxygen in flue gas can be avoided identified

-- equilibrium and dynamic sorption measurements of NO, **NO₂, SO₂** completed

-- single component and multicomponent sorption studies

F. Rezaei et al., *Industrial & Engineering Chemistry Research,* **2013**, 52, 12192-12201.

F. Rezaei et al., *Industrial* & *Engineering Chemistry Research,* **2014**, in press.

SOx/NOx studies facilitated by support of Southern Company.

SOx/NOx Experiments:

4) Assessing the impact of operating conditions on deactivation via (i) oxidation, (ii) SOx exposure, (iii) NOx exposure.

-- NO₂, SO₂ adsorb strongly, but have modest impact at low concentration

- -- saturation capacity loss observed
- -- high concentration of gases (200 ppm) cause significant capacity loss

-- deactivated fibers can be <u>stripped of</u> amine and recharged in the field for <u>full</u> <u>capacity regeneration</u>

School of Chemical & Biomolecular Engineering

GeorgiaInstitute

Hollow Fiber Contactor as Heat Exchanger:

5) **Constructing a barrier lumen layer** in the fiber bore, allowing the fibers to act as a shell-in-tube heat exchanger.

Two approaches:

(i) **Post-treatment**: Flow of a polymeric, Neoprene[®] latex and cross-linker through fibers

Sample	He permeance (GPU)		
CA/Silica	72,200 (25 psi)		
CA/Silica/Neoprene®/TSR-633	3.4		

-- Large decrease in mass flux from bore to shell with lumen layer = good barrier layer

Y. Labreche et al., ACS Applied Materials & Interfaces, 2014, submitted.

Hollow Fiber Contactor as Heat Exchanger:

5) **Constructing a barrier lumen layer** in the fiber bore, allowing the fibers to act as a shell-in-tube heat exchanger.

Two approaches:

(i) **Post-treatment**: Flow of a polymeric, Neoprene[®] latex and cross-linker through fibers

- <u>Disadvantage</u> – <u>fibers can become clogged</u> by latex, requires careful handling of latex

(ii) Dual layer fiber spinning – spin the lumen layer when initial fiber formed

- <u>Advantage</u> – <u>highly scalable synthesis</u> when poly(amide-imide) like Torlon[®] employed

 Main fiber: porous Torlon[®] containing 50-60 wt% silica;
 Lumen layer: dense Torlon[®]; post-treatment with PDMS gives excellent barrier properties

Hollow Fiber Contactor as Heat Exchanger:

- Torlon®, commercially available
- Improved thermal & chemical stability
- Excellent barrier properties for both water and gases
- No need for problematic latex post-treatment

Y. Fan et al., *AIChE Journal,* **2014**, submitted.

Y. Labreche et al., *Polymer*, **2014**, in preparation.

School of Chemical & Biomolecular Engineering

Georgialnstitute

lechnology

Fiber Cycling – Model and Realistic Conditions:

6) Demonstrating steady-state cycling of multi-fiber module with heating/cooling.

Water Outlet

Flue gas composition: $35 \circ C$, 1 atm ~ 13% CO₂, ~13% He (Inert tracer), 6% H₂O, balance gas N₂

CO₂ Sorption in Uncooled Generation 2 Fibers:

Generation 3 Fibers:

Dynamic process modeling and system technoeconomic analysis suggest there are several factors to lowering costs:

- (i) Improved sorption capacities [pseudo-equilibrium (q_{pe}) , breakthrough (q_b) , swing capacities (q_s)]
- (ii) Improved process configuration allowing for enhanced heat management without integrating with power plant

Generation 3 Fibers:

Dynamic process modeling and system technoeconomic analysis suggest there are several factors to lowering costs:

- (i) Improved sorption capacities [pseudo-equilibrium (q_{pe}) , breakthrough (q_b) , swing capacities (q_s)]
- (ii) Improved process configuration allowing for enhanced heat management without integrating with power plant

	(mol/kg fiber)	q _{pe}	q _b	q _s	
Generation 1 fibers:		1.1	0.5	0.30	
Generation 2 fibers:		1.5	1.1	0.65	
Generation 3 fibers:		2.0	1.3	0.75	
Georgialnstitute		(260% ir	ncrease in	q _b in 2 ye	ears)

Model Development (Single Gen 2 Fiber Modeling):

Georgia Institute F. Rezaei et al., Chemical Engineering Science, 2014, 113, 62-76. Technology School of Chemical & Biomolecular Engineering

തി

Process Improvement from Modeling : Effect of Sorbent Size:

- Model predicts increase in breakthrough capacity due to decrease of mass transfer resistance
- Smaller silica particles to be employed experimentally.

JOGIY

Hollow fiber schematic with different mass transfer resistance components

Overall mass transfer resistance vs. sorbent size

School of Chemical & Biomolecular Engineering

Georgialnstitute **ech**mol

Overall approach:

School of Chemical & Biomolecular Engineering

Process Flow Diagram - Cycle Steps:

CO₂ Balance:

CO₂ purity of 95% and recovery of 90% per pass

Technoeconomic Evaluation Methodology:

The current technoeconomic evaluation employs a similar methodology to the first and second year:

- Outputs from cyclic steady state fiber model (e.g., tempered water flow rates and temperatures) were abstracted and used as inputs to steadystate process model
- Heat and material balances were used to size and select equipment
- Capital costs, operating costs, and technoeconomic metrics were calculated according to DOE methodology

Equipment pricing was improved over year 1:

- Equipment cost curves were developed to accommodate more rapid evaluation of process options by overall modeling team.
- Aspen In-plant Cost Estimator replaced PDQ\$ as the equipment cost estimating software.

Year 2, CO_2 recovery target (93%) was met, but CO_2 purity was not (82%). Year 3, CO_2 recovery (90%) and purity targets met, (95%).

DOE Design Basis:

- Specified in solicitation, similar but not identical to DOE baseline reports
- 550 MWe net, 90% CO₂ capture
- Supercritical steam cycle
- Inlet flue gas conditions and composition
- Outlet CO_2 at 95% purity and 15272 kPa (2215 psia)
- Cooling water supply, return, and approach temperatures
- Steam delivery conditions:
 - IP/LP crossover
 - 395 C (743 F) and 1156 kPa (168 psia)
 - Thermal energy penalty of 0.0911 kWh/lb

Energy and Escalation Results Year 3:

Desc	ription	Units	Value
Escalation Factor		-	1.532
Energy			
	Sorption enthalpy	MWth	183.2
	Sensible heat	MWth	1006
	Total enthalpy per sorption or desorption step	MWth	1190
	Main heater duty	MWth	550
	Main cooler duty	MWth	-563
	Intraprocess heat recovery	%	
Stear	n usage	kg/h	819000
Derate			
	Direct Electrical Derate	MWe	110.8
	Steam Derate	MWe	252.6
	Steam Turbine Energy Recovery	MWe	-71.0
	Total Derate for CO ₂ Capture	MWe	292

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

Escalated Capital Costs:

	Description	Units	Year 3	Comments
	Total purchased equipment			
	costs (PEC)	MM\$	221.6	1850 modules
	Fibers	MM\$	135.9	450,000 fibers/module
	CO ₂ capture	MM\$	57.6	
	CO ₂ compression	MM\$	28.1	
	Process Plant Cost (PPC)	MM\$	641.5	PPC = PEC + Direct Costs
	Total Plant Cost (TPC)	MM\$	1078.5	TPC = PPC + Engineering + Process Contingency + Project Contingency (30%)
	Total Plant Investment (TPI)	MM\$	1142.6	TPI = TPC + Interest and Inflation
	Total Capital Requirement (TCR)	MM\$	1175.3	TCR = TPI + Startup + Initial Fill + Working Capital + Land + Others
	Annual Capital Charge	MM\$/year	205.7	
GeorgiaInstitute of Technology				

School of Chemical & Biomolecular Engineering

Technoeconomic Metrics Escalated Case:

Description	Units	Year 3 Q3
Levelized Costs of Electricity and Steam		
Levelized cost of electricity	mills/kWh	154
Levelized cost of steam	\$/1,000 lb	14.0
Cost of CO ₂ Capture		
Total Annual Cost of CO ₂ Capture	MM\$/year	303
Impact of CO ₂ Capture on Plant Efficiency		
Net Plant Efficiency without CO ₂ Capture (HHV)	%	39.3
Net Plant Efficiency with CO ₂ Capture (HHV)	%	25.6
Change in Net Plant Efficiency	%	-11.2

Metrics were calculated using simplified equations specified in the solicitation.

Summary & Future Work:

- Rapid Temperature Swing Adsorption (RTSA) enabled by a new contactor combined with solid amine sorbents.
- Cycle allows quasi-isothermal adsorption with significant sensible heat recovery due to nanoscopic shell-tube heat exchanger design.
- Refined Technoeconomic analysis suggests targets for improvement.
 -- Current parasitic load, Gen 2 fibers (1.53 escalation factor)
- Refinement Approaches:
 - -- Gen 3 fibers = 1.43 escalation factor
 - -- Gen 3 fibers (**VTSA**, 0.33 bar desorption pressure) **Lower bound steam savings = 30% less heat used**
 - -- Gen 3 fibers (VTSA, 0.33 bar desorption pressure) Upper bound steam savings = 50% less heat used
 - -- Multi-bed adsorption

Funding

DOE Award #: DE-FE0007804 Algenol Biofuels GE Southern Company

<u>People</u>

Dr. Ron Chance – Algenol Biofuels Dr. Ying Labreche – hollow fiber spinning Dr. Yanfang Fan – experimental system design and testing Dr. Fateme Rezaei – sorbent synthesis and fiber modeling Dr. Swernath Subramanian – fiber modeling Ms. Jayashree Kalyanaraman – fiber modeling Ms. Grace Chen – sorbent synthesis & characterization / fuel gas upgrading Mr. Morgan French – Southern Company Mr. Jerrad Thomas - Southern Company

Program officer Bruce Lani – NETL, DOE

Contact

Christopher W. Jones

cjones@chbe.gatech.edu

Georgia Institute of Technology

School of Chemical & Biomolecular Engineering

Technology