

Progress Update on the <u>Carbon-dioxide</u> <u>Absorber Retrofit Equipment (CARE)</u> Program

Andrew Awtry, Principal Investigator Ryan Sears, Program Manager Cameron Andersen, Sr. Engineer

Performance Breakthroughs Proprietary Jets

Parameter	Benefit	
High flat jet specific surface area: $a_s > 1000 \text{ m}^2/\text{m}^3$; High overall volumetric mass transfer kinetics, $10 \times \text{K}_{\text{L}} a_s$ over conventional systems	High process efficiency; Greatly reduced column footprints; Reduced column/orifice manufacturing and lead time costs	
Low $\Delta P_{Gas} \sim 0.03 \text{ psi/ft};$ Low $\Delta P_{Liq} = <10 \text{ psi}$	Reduced hydrodynamic/ auxiliary power	
Aerodynamic shaped jets	Reduced liquid entrainment in the gas flow	
Factory fabrication of modular/serviceable units	Standardization/lower cost fabrication; Rapid scaling per customer needs	

NeuStream®-C Absorber Size Comparison

CARE Program

Project Objectives

- Design and fabricate 0.5 MW system
- Minimize parasitic power through efficient design
- Demonstrate
 - 2 month steady-state operation with Multi-Stage
 Absorber and Innovative Stripper
 - 90% CO₂ capture efficiency utilizing best available solvent (piperazine at 8m)
- Show unit traceability/scalability to commercial scale – Final TEA

CARE Program

Partners

- DOE/NETL
 - Award FE-0007528
 - Funds: \$7,164,192 / 32 mo
 - NETL PM: Andrew O'Palko
- Energy and Environmental Research Center (EERC)
 - Techno-EconomicFeasibility Study
 - Environmental Health &
 Safety risk assessment for carbon capture and storage
- URS Bob Keeth

- Colorado Springs Utilities
 - Host Site (Martin Drake Power Plant)
 - Significant Cost Share
- UT Carbon Management Program
 - Dr Gary Rochelle
 - Dr Eric Chen
- Service Partners
 - Althouse Electric
 - Swartz Electric
 - Vision Mechanical
 - ICM Construction
 - Palmer Holland/Huntsman (Chemical Providers)

CARE System Design

Process Flow Diagram

 NSG flat jets are incorporated into the FGD, Polishing FGD, CO₂ Absorbers, Amine Wash, and Stripper

CARE System

Enclosure

Enclosure (with insulation) installed around the test stand

Climate Controlled

Conc Pz Solvent
 Limit Access
 Hazard Containment

FD Fan

- Forced Draft Fan
- Connected to inlet ducting
- VFD controlled
- Flow and composition verified using Airtech Environmental Services Inc.

Capture Subsystem FGHR HEXs

- Flue Gas Heat Extraction
- Re-Heat HEXs used to bring flue gas to representative temperature (350°F)
- Steam from electric boiler produces heat

Capture Subsystem
FGHR HEXs

- Flue Gas Heat Extraction
- Solvent HEXs extract heat and offset steam use

NeuStream™-S FGD

- Existing equipment carried over for use on CARE
- 2 stages of SO₂ scrubbing
- No sorbent processing system on FGDs

Ducting to CO₂ Absorbers

- Ducting to CO₂ absorbers
- Connects FGD mist eliminator to CO₂ absorbers

Absorber Module

Absorber Design

Parameter	Value	Units
Stage Width	58.4	cm
	(23)	(in)
Stage Height	30.5	cm
	(12)	(in)
Stage a _s	440	m²/m³
Stage Length	2.75	m
	(108.3)	(in)
Capture Efficiency	90%	
Number of Stages	12	

4x Absorbers at 2.75 m each = 11 m Total Length

Absorber Module 90% Capture of 0.6MW

- At CSU's Drake: 2300 SCFM/MW, 12.5% CO₂ and 0.8 atm requires
 11 meters with 12 stages to get the necessary 2.2 sec residence time
- Using NETL Case 9/10: 2007 SCFM/MW, 13.5% CO₂ and 1 atm requires 7.6 meters with 12 stages to get the necessary 2.2 sec residence time

CO₂ Absorber Train

Absorbers

- (1 of 4) Single Absorber Module
- Three stages incorporated into design

Absorbers

Gravity feed overflow through 4" pipes to maintain liquid level in absorbers

Amine Wash

- Existing test stand that required some slight modifications (plumbing changed from PVC to stainless)
- Expected reduction of Amine slip to <1ppm

Rich Overflow Tank and Pump

- Absorber 4 overflows into the rich overflow tank
- The rich overflow tank is a solvent holdup vessel for the system
- Rich pump pulls from rich overflow tank and pushes solvent through the cross HEX to the Stripper

Heat Transfer Subsystem Main Cross HEX

- Primary Cross HEX
- 10°C approach temperature
- Maximum operating pressure of 200 PSIG

Stripper Subsystem

NSG Stripper

- Innovative stripper design – designed with Dr. Rochelle
- Stripper operational temperature of 150°C
- Stripper operating pressure of 8 bar

Mar – April Check Out Testing

- Validated performance of all major components
- Check out testing on single stages with various nozzle configurations
 - Validation of previous small scale DVT work
 - Tested new nozzles
 - Tested various configurations of the nozzles
- Verify sensor performance via mass balance closures
 - Solvent working capacity vs Absorber capture efficiency vs Stripper outlet (Mass Flow)

May 1, 2014 Test Data

- 0.5MW gas flow through the CARE System
- 6m Piperazine solvent
- Lean Loading: 0.28 mol CO₂/mol Alk
 - 8bar Stripper Pressure
 - 150C Stripper Temperature
- 90% capture efficiency based on flue gas monitors
- 88% capture efficiency based on working capacity of the solvent
- Preliminary Results... System Not Optimized

May 5, 2014

- Fire at CSU's Martin Drake Facility
- All three units (5, 6 and 7) taken offline due to fire damage
- Unknown timeline on return to service Unit 7 still down to date

Revised BP3 Objectives

- Move system to NSG facility
 - Move ¾ of the absorbers
 - Simplify the system (no FGD, NOx Control, Flue Gas Heat integration)
 - Run on simulated Coal Flue gas (NG boiler with CO₂ recycle)
- Improve NSG Technology to further drive down costs through lower parasitic power
 - Bench Scale R&D
 - Promising technologies are integrated into the LARGER scale
- Demonstrate capture with multiple (≥3) solvents
 - Solvent agnostic technology
- Update System Cost for TEA at close of BP3

Installation at NSG

Installation at NSG

Installation at NSG

Technology Development Test Stand

- ~100 kW size
 - Single stage absorber
 - 10-20% Carbon Capture Efficiency
 - Capture and regeneration capability
- Solvent Testing
 - Needs 50gal
 - First Approx. on Performance
 - CO₂ Solutions, Piperazine tested
 - Can't share CO₂ Solutions' data per confidentiality agreement
- Technology Testing
 - Multiple Nozzles and Nozzle Configurations
 - $-a_s \approx 800 \text{ m}^2/\text{m}^3 \text{ achieved}$
 - Working on design to increase jet length from 12" to 36" at high a_s

CAREtoo System

Test Plan/Schedule

- June-Nov: Bench Scale Testing on Technology and Solvents
- Aug-Sept: Acceptance/Shakedown testing of CAREtoo
- <u>Sept-Nov</u>: Integrating and testing technology improvements
- Oct-Jan: Solvent Testing (2-3 weeks per)
 - Concentrated piperazine (6m-7m)
 - CO₂ Solution's Solvent
 - Monoethanolamine (MEA)
 - Any others?
- <u>Jan</u>: Program Closeout (BP4 move back to Drake for completion of original objectives)

CARE NSG's Carbon Capture Pilot Program

Dr Andrew Awtry
Principal Investigator
andya@neumannsystemsgroup.com
(719) 247-8519

Dr Ryan Sears
Program Manager
ryans@neumannsystemsgroup.com
(719) 247-8510

Dr Jean-Philippe Feve VP Business Development jpfeve@neumannsystemsgroup.com (719) 247-8532