

NATIONAL ENERGY TECHNOLOGY LABORATORY

Recent Cathode Studies Novel Concepts, Tools, and Results to Make Better Cells

Briggs White, Ph. D. Project Manager Advanced Energy Systems Division National Energy Technology Laboratory

Outline

- Introduction
- Documenting Recent Progress
 - Purpose
 - Process

<#>

• Report Highlights

Cathode Performance - Status and Objectives

State-Of-The-Art

- Cathode overpotential adequate
- Total degradation 1-2 %/1000 hrs
- Bulk microstructures established
- Operate at 650-900°C

Technical Objectives

- 100 mV cathode overpotential
- Overall <u>degradation</u> = 0.2 %/1000 hrs
 - Key Industry Focus

Benefits

- + Capital cost (\$ / kW)
- + System efficiency (%)
- + Environmental impacts (emissions, carbon & H₂O)
- + Service lifetime (>40,000 hrs)

Cost Of Electricity (\$ / kW*hr)

Cathode Development - Historical Perspective \$175/kW >\$1,500/kW Stack Cost Reduction Stability Prioritized **LSCF 6428** LSCF Identified **Stabilized** 2000 2010 2013Screen bulk compositions **Optimize microstructures Optimize processing** Study mechanisms Chrome ID Coatings **Characterizing Surfaces** Infiltration Maturing ENESCA LECHNOLOCA 173057

Validation of Concepts

Documenting Recent Progress

Goal - Improve tech transfer

Process & Contents

- Succinct reporting with key takeaways for industry
- SECA Core Technology Program authors
- 3 integrated reports
- 5 topical reports
- 2007-2013
- Surface Science, Infiltration, Degradation, and Mechanisms

Report Highlights

- **1. New In situ Characterization Tools**
- 2. New Surface Property Data
- 3. In situ / Ex situ Correlations
- 4. Surface Chemistry Manipulation
- 5. Catalyst Thickness
- 6. Interface Effects
- 7. Infiltration Developments

New In situ Characterization Tools

- High-temperature, applied bis controlled atmosphere
- Thin-film samples
- Surface sensitive crystal structure
- Variable-depth composition
- Valence state

Lab X-ray Tool

Test Attributes

- High-temperature, applied bias, controlled atmosphere
- Porous cathode microstructures
- Phase analysis (secondary phases)
- Bulk sensitive
- High throughput

New Surface Property Data

<u>Takeaways</u>

- Surfaces of cathodes are significantly different than the bulk
 - Most have strontium segregation
- Surfaces change rapidly with time and bias

Data Collection & Results

- Results obtained primarily from synchrotron x-ray techniques
- Additional data available for La and Mn
- LSCF surface reconstructs, LSM does not

In situ / Ex situ Correlations

<u>Takeaways</u>

- LSM surface has similar Sr segregation in air at all temperatures
- Ex situ tools reasonably appropriate for characterizing surface composition of LSM
- Additional data available for LSFC and LSC

In situ Tools SOFC Operating Conditions

Ex Situ Tools

Room Temperature

Change in Sr concentration from bulk

	Operating T (700-1000 C)	Low T (300 C)
Low pO ₂ (mTorr)	+35%	+50%
Operating pO ₂ (atmospheric)	+21%	+25%

Surface Chemistry Manipulation

<u>Takeaways</u>

- Dopant size mismatch can drive surface segregation
- Smaller mismatch, less segregation
- Larger mismatch, more segregation

Doped LaMnOx Thin Films

Doped LaMnOx Thin Films

Performance Implications

- Now possible to tune surface composition using dopants
- New projects will guide future cathode architectures with stable performance
 - surfaces stable in real-world air (chrome, CO₂, moisture)

Infiltration

NATIONAL ENERGY TECHNOLOGY LABORATORY

Catalyst Layer Thickness Effects

- Layer thickness controls surface composition
- A/B-site ratio
- A-site dopants can segregate
- Depends on materials, processing, and operating conditions

- Layer thickness controls surface electronic structure
- Surface band gap affected
- May control oxygen reaction rates

Informs design of infiltrated microstructure for high performance

Interface Effects

Interfaces strongly influence:

- Surface exchange kinetics
- Electrical resistances

Dense SDC barrier layer fabricated with Pulsed Laser Deposition

Substantial reduction in cell resistance

NATIONAL ENERGY TECHNOLOGY LABORATORY

Summary

- 1. SECA has come a long way
- 2. Compilation of Recent Cathode R&D available

<u>Highlights</u>

- New Surface Property Data
- New In situ Characterization Tools
- In situ / Ex situ Correlations
- New Concepts:
 - Surface chemistry manipulation
 - Catalyst thickness effects
 - Interface effects
- Review of Infiltration

Acknowledgements

<u>Authors</u>

ANL – Kee-Chul Chang, Paul Fuoss, Brian Ingram, and Hoydoo You

Boston Univ. – Srikanth Gopalan

Georgia Tech. – Dong Ding and Meilin Liu

MIT – Bilge Yildiz

NETL – Kirk Gerdes

Contributors

PNNL – Jeff Stevenson

Montana State Univ. – Yves Idzerda

Editing

‹#>

Jenny Bowman

Available on-line at DOE-NETL's SECA Reference Shelf

http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/refshelf.html

Thank You!