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Materials & Systems Research Inc.

specializes in materials and electrochemical engineering for power generation and energy
ge applications: fuel cells/electrolyzers, storage batteries, and thermoelectric converters.

has 12 employees: 5 with PhDs in material, mechanical, chemical, & chemistry
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Solid Oxide Fuel Cell is capable of converting the chemical energy of the carbon-based fuels
ectly into electricity with higher efficiencies while reducing the NO, and SO, emissions
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Motivation for Cathode Enhancement

igh power density, long-term reliability & minimal degradation are critical
) success of SOFC technologies and fast market penetration

> cost target: stack cost < $S175/kW (cathode material cost ~ 18%, or ~ $31.5/kW)
> degradation rate: 0.1~1% per 1000 hours operation

athode polarization losses attribute significant amount to total cell losses

athode development: High-performing cathode materials, or/and cathode

"ocessing optimization

) infiltration of a nano-structured/nano-sized catalyst has been proven to be one of
most effective/efficient means for cathode enhancement

) challenges

» key parameters determining the success of infiltration process, including
adaptability to the pre-established cathode backbones, precursor solution
concentration, surfactant, wetting agent, evenness of catalyst distribution along cathode
backbones

e simplicity
e cost-effective
e scalable for large cells
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Objective & Accomplishments

Dbjective: to develop and implement an advanced cathode deposition
rocess via infiltrating a nano-catalyst(s) into pre-established cathode
bvackbones for SOFC performance enhancement

Accomplishments:

» Engineered cathode backbone microstructures for an efficient single-step
infiltration

» Developed and implemented a single-step VPIT process for infiltrating a nano-
sized catalyst into pre-established cathode backbones with per-cell active area
varying from 2 cm? to 100 cm?

» Developed a 2" generation of an infiltration apparatus for large cell
applications

» Successfully increased the catalyst loading level to 2~2.5 mg/cm? on both
button-sized cells and 10 cm x 10 cm cells via the single-step VPIT process

A\

Improved cell performance more than 60% after catalyst infiltration

A\

Developed a viable strategy to mitigate cell degradation and was validated
over accumulated 25,000 cell-hour tests

» Successfully demonstrated cell degradation rates < 3%/1khrs over 5,700 hrs
tests



Single-step Infiltration Concept

Align device, evacuate chamber and electrode pores Diagram of the Single'Step Vacuum-
Air Qut Pressure-Infiltration-Thermal Treatment
’ (VPIT) technique, involving:

Closed Valve Closed Valve

| I » Initial vacuum step to remove air
Infiltration Target entrapped inside the cathode
backbones

Cell Support Silicone Gasket

» precipitation of a nitrate solution into
the porous cathode backbones

Deliver specific volume of catalyst selution

Closed Valve
| Solution In

Solution In

» and immediately followed
pressurization

» gelation/decomposition at a proper

Apply heat and reintroduce atmospheric pressure rate/temperature
Air In

( > Calcination at elevated T ~8502C

Closed Valve O Precursor concentration effects on
I performance, e.g. (Sm,Sr)CoO;, or

SSC
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Anode-supported SOFC Fabrication

aseline cell fabrication for infiltration studies

0 MBSRI’s standard cell fabrication process involves sequential steps: starting
from powder mixing/milling = anode tape casting = cell shaping by laser
cutting = bisquing = AIL & electrolyte layer application = sintering =2

CIL/CTL/CCL deposition by screen-printing & firing.
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Cell Construction and Test

» In this study, all cells were
constructed with:

* Ni-YSZ anode support (~0.7 mm)

e YSZ-based electrolyte (8 um)

* LSM-based cathode system,
consisting of LSM+YSZ as CIL,
LSM+LSCF as CTL, and LSCF as CCCL

> Per-cell active area:

e Button cell: 2 cm?
* Single cell: 100 cm?

> Test conditions:

e Either H, or a diluted H, as the fuel

e Low fuel utilization for button cells

e Controlled utilization for single cells,
typically 40% ~ 60%

TWD T-Qv o e——10ym — .
[10.9 mm|20.00 kv e Cell temperature fixed @ 8002C

SEM micrograph of a base cell
(MSRI standard cell)



Baseline Cell (LSM-based) Tests

Baseline cells
H,/air, 800°C
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Baseline Cell Long-term Tests

Baseline button cell w/o infiltration (Zcmz), H,/air, 800°C

I 17%/1khr over initial 500 hrs

»

- 1.16%/1khrs over 1500 hrs
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Tested over
2000 hrs

current density
increased from
0.7 A/cm?to0 0.8
A/cm? after the
initial 500 hrs
test

Cell power
density
increased by
17%/1khrs
during the initial
500 hours

Cell degradation
rate @ -
1.16%/1khrs
over the last
1500 hrs



seline Cell Performance Characterization

VI tests & EIS measurement at scheduled time (weekly)
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cursor Concentration Effects on Loading along CIL

SSC concentrations: (a) 0.25
M, (b) 0.47 M, (c) 0.57 M, (d)
0.7 M, (e) 0.76M

SSC loading was increased
from 1 mg/cm? to 2~2.5
mg/cm? for both button cells
(2 cm?) and large cells (100
cm?) after the single-step VPIT
process




' Precursor Concentration Effects on Cell Performance

Infiltration of (Sm, Sr)CoO, catalyst
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SSC-S3-5 (0.7M) Cell Long-term Test
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At 0.8 A/cm?,
cell
performance
increased by 6%
over 450 hrs

Current density
increased from
0.8A/cm2to 1.1
A/cm?

no degradation
over 600 hrs

accelerated
degradation
was observed
during the last
50 hrs (0.72V
dropped to
0.66V within 50
hrs)



Nano-catalyst Growth/Coarsening Issue

st-test cell (SSC-S3-5 cell after 650 hrs long-term test) characterization




itigate Particle Growth/Coarsening Issues

‘Ideal microstructures”???

‘ ! i r electrocatalystsdeposition layers
CIL

— 500 Nnm ——

'SEM of the electrolyte/CIL interface * Engineer the catalyst precursor solution,

nstruct CIL and CTL to ensure an upon infiltration, to avoid excessive
ient infiltration of a catalyst agglomerates and to ensure a good coverage

klvv into the FRS< (TPR & 727PR) of 2 catalvet alono the cathode orainc



plement & Evaluate Mitigation Strategies

Long-term test results of a button cell
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upon infiltration, cell
power density at 0.7V
increased from 0.55
W/cm? to 0.86 W/cm?
(> 60% improvement)

performance improved
over +4.5%/1khrs
during the initial 1000
hrs test until a power
outage,

cell was still under full
load (2.2A, 0.27V) at
6902C during a power
outage over a weekend

cell overall degradation
rate @ -2.56%/1khrs
over 57,00 hrs (over 8
months)

the mitigation
strategies showed great
promises to improve
performance and
stability



Significance of Catalyst Infiltration

VI tests & EIS measurement at scheduled time (weekly)
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efits from Catalyst Infiltration — asr standpoint
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rostructure Changes after Long-term Tests

Cell after thousands of hours test.
Sample was prepared by FIB cut near
electrolyte (CIL)

» cell w/ SSC infiltration, sample was
>d by FIB cut near electrolyte (CIL)



rostructure Changes after Long-term Tests

o

a cell after ~ 53,00 hours test (1.5A/cm? @ 0.7V)



Other Nano-sized Electrocatalysts

Two Button Cells
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ling-up from Button Cells to 100cm? Cells

Study of SSC loading distribution along a 4”x4” single cell
cathode surface (100 cm?) — from corner to corner

sSC loadaing, mg/cm




Single Cell (100 cm?) Evaluation
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ng-term Test of a Single Cell w/ SSC Infiltration

Single Cell w/ LSM-based cathode system (100 cm?)
inf. w/SSC, T-cell@800°C, 50%H,-N./air @ 40%/40%
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| onog-term tec<t re<tilt of a <ingle cell w/ SSC infiltration

Cell temperature
adjusted to 8002C

Dilute fuel w/ fixed
40% utilizations

Under a constant
current of 50 A
(0.5A/cm?)

Cell voltage ~ 0.8 V

Power improved by
~ +2%/1khr during
initial 200-hr test

Over the 1khr test,
power degradation
rate: -3.5%/1khr, or
-0.014 mW/cm?2-hr



ltration of an electrochemically active catalyst is an ,’
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cient and cost-effective approach to improve SOFC ’

hode performance ,
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