# Mechanistic Enhancement of SOFC Cathode Durability

US Department of Energy, National Energy Technology Laboratory, Contract No. DEFE0009084

Eric D. Wachsman, Yi-Lin Huang, Christopher Pellegrinelli, Joshua Tallion, & Lourdes Salamanca-Riba

University of Maryland Energy Research Center

www.energy.umd.edu



#### Fundamental Mechanisms of SOFC Cathode Reactions

Systematic Approach to Developing Low Polarization Cathodes:

 $R_{Cathode} = R_{Gas\ Diffusion} + R_{Surface\ Adsorbtion/Diffusion} + R_{Charge\ Transfer} + R_{Ohmic}$ 

R<sub>Gas Difussion</sub> and R<sub>Ohmic</sub> are functions of:



• Conductance (solid phase conductivity or gas phase diffusivity)

R<sub>Surface Adsorbtion/Diffusion</sub> are functions of:

- Microstructure (surface area/volume)
  - Kinetics (surface coverage, surface diffusivity)

R<sub>Charge Transfer</sub> is function of:

- Microstructure (L<sub>TPB</sub>, surface area/volume)
  - Kinetics (Oxygen reduction rate)



## Quantify Microstructural Effects - FIB/SEM



Pioneered use of FIB/SEM to quantify cathode microstructures and developed phase contrast for composite cathodes

Siemens Cathode Sample

## Microstructure - Performance Relationship



First direct quantified relationship between cathode microstructure and performance

For the LSM on YSZ cathode reaction:

$$\frac{1}{2}O_{2,ads} + 2e' + V_0^{\bullet \bullet} \rightarrow O_0^{\times}$$

The current is:

$$I_0 = k_f \left[ e' \right]^m \left[ \mathcal{O}_{2, ads} \right]^n \left[ \mathcal{V}_0^{\bullet \bullet} \right]^p$$

The corresponding charge transfer polarization ( $R_{ct}$ ) dependence on triple phase boundary length ( $L_{TPB}$ ) is:



$$R_{ct} \sim (k_f^{-1}) L_{TPB}^{-3.5}$$

## Fundamental Rate Constants - Catalysis









## ORR Reaction Mechanisms in Presence of H<sub>2</sub>O and CO<sub>2</sub>



$$S + 1/2O_2 \overset{k_1}{\underset{k_{-1}}{\longleftrightarrow}} O_{ads}$$

$$O_{ads} + V_o \overset{k_2}{\underset{k_{-2}}{\longleftrightarrow}} s + O_o^x$$

Oxygen reduction reaction:

- 1. dissociative absorption
- 2. incorporation



**Energy Research Center** 

## Research Plan

- Determine effects of H<sub>2</sub>O, CO<sub>2</sub>, and Cr vapor on ORR mechanism
  - Determine surface reaction mechanisms and rates with <sup>18</sup>O- exchange in H<sub>2</sub>O, CO<sub>2</sub>, and Cr vapor
  - Determine operating conditions (Temp. & Conc.) where H<sub>2</sub>O, CO<sub>2</sub>, and Cr vapor have both major and minor effects on LSM and LSCF cathode performance
- Operate in conditions (Temp. & Conc.) where H<sub>2</sub>O, CO<sub>2</sub>, and Cr vapor have major effects on LSM and LSCF cathode performance:
  - Quantify microstructural changes with FIB/SEM
  - Relate microstructural and ORR degradation to cell polarization
  - Test using integrated in situ electrocatalysis
- Develop predictive mechanistic models for cathode degradation and determine operating conditions for maximum durability



## <sup>18</sup>O-Exchange in CO<sub>2</sub> to Determine Effect on ORR Mechanism

$$S + 1/2O_2 \underset{k_{-1}}{\overset{k_1}{\longleftrightarrow}} O_{ads}$$

$$O_{ads} + V_o \underset{k_{-2}}{\overset{k_2}{\longleftrightarrow}} s + O_o^x$$

#### Oxygen reduction reaction:

- 1. dissociative absorption
- 2. 2. incorporation







## Effect of CO<sub>2</sub> on LSCF Temp. Programed <sup>18</sup>O-Exchange



#### **Presence of CO<sub>2</sub>:**

- Shifts  $O_2$  peak temperatures
- Reduces O<sub>2</sub> exchange with LSCF lattice
- Indicating that CO<sub>2</sub> participates in surface exchange



## Effect of CO<sub>2</sub> on Isothermal Isotope Exchange of LSCF





## Effect of CO<sub>2</sub> on Isothermal Isotope Exchange of LSCF



#### **Presence of CO<sub>2</sub>:**

- Modifies O<sub>2</sub> exchange with LSCF surface
- Surface-O is exchanging with CO<sub>2</sub>
- All of the CO<sub>2</sub> dissociates on LSCF surface



## Effect of CO<sub>2</sub> on IIE of LSCF at Multiple Temperatures

Closed symbol: no CO<sub>2</sub> Open symbol: in 2,500ppm CO<sub>2</sub>



CO<sub>2</sub> exchange at 800°C

2500

Total O<sub>2</sub>

1500

CO<sup>18</sup>O<sup>18</sup>

CO<sup>16</sup>O<sup>18</sup>

Time (minutes)

Decrease in 36 signal indicates CO<sub>2</sub>
 participation

The O<sub>2</sub> in CO<sub>2</sub> exchange profile (left, open symbol) has a similar shape to the CO<sub>2</sub> exchange profile (right)







at 700°C







## CO<sub>2</sub> Concentration Dependence of IIE of LSCF

As CO<sub>2</sub> concentration increases there are changes in O<sub>2</sub> species concentrations (32, 34, 36)

- <sup>18</sup>O-<sup>18</sup>O: final concentration decreases

- <sup>16</sup>O-<sup>18</sup>O: final concentration increases

#### Oxygen exchange in 2500ppm CO<sub>2</sub> at 800°C



Oxygen exchange in 1250ppm CO<sub>2</sub> at 800°C



Oxygen exchange in 5000ppm CO<sub>2</sub> at 800°C





## Extracting the Surface Exchange Coefficient from IIE



- Use equation below to extract the fraction of <sup>18</sup>O that exchanges with lattice <sup>16</sup>O
- Can be fit with Crank's solution for sphere

$$\left(\frac{1}{2}\right)$$

#### <sup>18</sup>O exchange with <sup>16</sup>O lattice





## Effect of LSCF Surface Exchange on CO<sub>2</sub> Concentration



#### k dependence on temperature and CO<sub>2</sub>

| Temp (°C) | CO <sub>2</sub> Concentration (ppm) | k (cm/s) |
|-----------|-------------------------------------|----------|
| 600       | 0                                   | 9.96E-09 |
| 600       | 2500                                | 1.38E-08 |
| 700       | 0                                   | 1.06E-09 |
| 700       | 2500                                | 1.40E-08 |
| 800       | 0                                   | 1.48E-08 |
| 800       | 1250                                | 1.50E-08 |
| 800       | 2500                                | 1.54E-08 |
| 800       | 5000                                | 1.64E-08 |

Fraction of <sup>18</sup>O<sub>2</sub> exchanged with LSCF surface <sup>16</sup>O as function of C<sup>16</sup>O<sub>2</sub> concentration



## Effect of LSCF Surface Exchange on CO<sub>2</sub> Concentration



- Oxygen exchange coefficient increases with CO<sub>2</sub> concentration
- Activation energy decreases with increasing CO<sub>2</sub> concentration

#### k dependence on temperature and CO<sub>2</sub>

| Temp (°C) | CO <sub>2</sub> Concentration (ppm) | k (cm/s) |
|-----------|-------------------------------------|----------|
| 600       | 0                                   | 9.96E-09 |
| 600       | 2500                                | 1.38E-08 |
| 700       | 0                                   | 1.06E-09 |
| 700       | 2500                                | 1.40E-08 |
| 800       | 0                                   | 1.48E-08 |
| 800       | 1250                                | 1.50E-08 |
| 800       | 2500                                | 1.54E-08 |
| 800       | 5000                                | 1.64E-08 |





## TGA of LSCF and LSM in 30% CO<sub>2</sub>



- CO<sub>2</sub> adsorption peaks at 400°C
- Gains 0.5% weight during heating
- Weight loss at 800°C due to decrease in oxygen stoichiometry

- CO<sub>2</sub> adsorption peaks at 350°C
- Gains 0.4% weight during heating
- Maintains 0.1% weight gain at 800°C possibly due to carbonate formation
- →Starting LSM <sup>18</sup>O<sub>2</sub> in CO<sub>2</sub> experiments



## <sup>18</sup>O-Exchange in H<sub>2</sub>O to Determine Effect on ORR Mechanism

0.5 SCCM 100%  $^{18}O_2$  balanced in 19.5 SCCM He + 0.3% H<sub>2</sub>O



## Effect of H<sub>2</sub>O on LSM Temp. Programed <sup>18</sup>O-Exchange



## Effect of H<sub>2</sub>O on Isothermal Isotope Exchange of LSM



## Effect of H<sub>2</sub>O on Isothermal Isotope Exchange of LSM

- •LSM is limited to surface or near surface exchange
- Much smaller exchange at lower temperature
- <sup>16</sup>O in <sup>16</sup>O<sup>18</sup>O from H<sub>2</sub>O or LSM surface oxygen





## Effect of H<sub>2</sub>O on IIE of LSM Powder Aged in 3% H<sub>2</sub>O



## Comparison with Symmetric Cell Testing



## Effect of H<sub>2</sub>O on LSM/YSZ Cathode Impedance (EIS)



## Comparison of LSM Cell Testing and IIE Results



- Cell and powder aged in 3% H<sub>2</sub>O at 800°C
- Increase in non-ohmic electrode impedance from 0 to 14 hrs corresponds to decrease in <sup>18</sup>O-exchange
- Subsequent decrease in electrode impedance from 14 to 48 hrs corresponds to increase in <sup>18</sup>O-exchange.
- Microstructural changes could also have occurred and we are investigating with FIB/SEM

## Effect of H<sub>2</sub>O on LSM/YSZ Cathode

LSM/YSZ Composite in Air + 3% H<sub>2</sub>O at 800°C, no bias

Air

Air 
$$+3\%$$
  $H_2O$ 





Visible discoloration of cathode exposed to H<sub>2</sub>O after 380 hours indicating degradation





## 3D Reconstruction of Degraded LSM/YSZ Cell



## Conclusions

- CO<sub>2</sub> actively participates in O<sub>2</sub> surface exchange with LSCF
  - CO<sub>2</sub> increases surface exchange coefficient and decreases activation energy
- H<sub>2</sub>O actively participates in O<sub>2</sub> surface exchange with LSM
  - Between 350°C and 700°C H<sub>2</sub>O exchange with dissociated surface-O dominates
  - Above 700°C O<sub>2</sub> exchange with LSM surface dominates
- Demonstrated direct correlation between LSM/YSZ cathode impedance changes during aging in 3% H<sub>2</sub>O and changes in O<sub>2</sub> surface exchange of LSM



# Integrated In situ Electrocatalysis



# Acknowledgement

US Department of Energy - SECA

Isotope exchange and impedance: Yi-Lin Huang & Christopher Pellegrinelli

FIB/SEM characterization:
Joshua Tallion & Prof. Lourdes Salamanca-Riba

