Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces

Dane Morgan, Yueh-Lin Lee

Department of Materials Science and Engineering University of Wisconsin – Madison, WI USA

Stuart Adler, Timothy (TJ) McDonald

Department of Chemical Engineering University of Washington, Seattle, WA USA

Yang Shao-Horn, Dongkyu (DK) Lee

Department of Mechanical Engineering
Massachusetts Institute of Technology, Boston, MA USA

14th Annual SECA Workshop Sheraton - Station Square, Pittsburgh, PA July 23 – 24, 2013

Acknowledgements

External Collaborators

- Michael D. Biegalski, H.M. Christen (Oak Ridge National Laboratory)
- Paul Fuoss, Edith Perret, Brian Ingram, Mitch Hopper, Kee-Chul Chang (Argonne National Laboratory)
- Paul Salvador (Carnegie Melon University)

This material is based upon work supported by the Department of Energy under Award Number DE-FE0009435).

Oxide Heterointerface for SOFC Cathodes

Interface of two oxides: Enhances ORR kinetics by orders of magnitude compared to individual phases¹⁻⁴

- [1] E. J. Crumlin, et al., The Journal of Physical Chemistry Letters, 1, 3149-3155.
- [2] M. Sase, et al., Journal of The Electrochemical Society, 2008, 155, B793-B797.
- [3] M. Sase, et al., Solid State Ionics, 2008, 178, 1843-1852.
- [4] K. Yashiro, et al., Electrochem. Solid State Lett., 2009, 12, B135-B137.

Oxide Heterointerface for SOFC Cathodes

Interface of two oxides: Enhances ORR kinetics by orders of magnitude compared to individual phases¹⁻⁴

LSC-113: ABO₃ Perovskite (AO-BO₂ stacking) Cathode Material

- 1. How does this interfacial enhancement work?
- 2. Can it be extended to XYZ-214/LSCF-113 interfaces?
- 3. Can we make more active, more stable cathodes with these interfaces?

^[1] E. J. Crumlin, et al., The Journal of Physical Chemistry Letters, 1, 3149-3155.

^[2] M. Sase, et al., Journal of The Electrochemical Society, 2008, 155, B793-B797.

^[3] M. Sase, et al., Solid State Ionics, 2008, 178, 1843-1852.

^[4] K. Yashiro, et al., Electrochem. Solid State Lett., 2009, 12, B135-B137.

LSC-214 LSCF-113

Yang Shao-Horn (MIT)

Present work: LSC-214 and

Ab initio Energetics
Thermokinetic Modeling

Dane Morgan (U Wisc.)
Present work: Defect chemistry
of LSC-214

NLEIS + Rate modeling, LSC-214/LSCF-113 porous electrodes

Stuart Adler (U Wash.)
Present work: LSCF model, porous
LSCF, LSC-113 film

LSC-214 LSC-214/LSCF-113 Films LSCF-113

Yang Shao-Horn (MIT)
Present work: LSC-214 and
LSC-214/LSCF-113

Ab initio Energetics
Thermokinetic Modeling

Dane Morgan (U Wisc.)
Present work: Defect chemistry
of LSC-214

NLEIS + Rate modeling, LSC-214/LSCF-113 porous electrodes

Stuart Adler (U Wash.)
Present work: LSCF model, porous
LSCF, LSC-113 film

Start date: 10/1/12 (~9 months completed)

Milestones for 2013

Milestone 1 – Synthesize/characterize LSCF-113 and LSC-214/LSCF-113 electrode.

Milestone 4 – Ab-initio simulations of LSC-214 and LSCF-113 defect and cathodic reaction.

Milestone 5 – Single phase continuum modeling of LSCF-113 cathodic reaction.

Ab initio Energetics
Thermokinetic Modeling

Dane Morgan (U Wisc.)
Present work: Defect chemistry
of LSC-214

NLEIS + Rate modeling, LSC-214/LSCF-113 porous electrodes

Stuart Adler (U Wash.)
Present work: LSCF model, porous
LSCF, LSC-113 film

Start date: 10/1/12 (~9 months completed)

Milestones for 2013

Milestone 1 – Synthesize/characterize LSCF-113 and LSC-214/LSCF-113 electrode.

Milestone 4 – Ab-initio simulations of LSC-214 and LSCF-113 defect and cathodic reaction.

Milestone 5 – Single phase continuum modeling of LSCF-113 cathodic reaction.

Thin-film Characterization of LSC-214/LSCF-113, LSC-113

Shao-Horn (MIT)

X-ray Diffraction Results

- ❖ All films clearly show *c*-axis-oriented epitaxial thin films
- ❖ Off normal XRD shows LSCF unit cell on the GDC with 45⁰ rotation

Surface Exchange Kinetics

- \clubsuit LSC₂₁₄ decoration can slightly enhance the surface exchange rate (k^q) of LSCF
- \clubsuit LSC₂₁₄ decorated LSCF shows comparable k^q with LSC₂₁₄

Surface Stability

- ❖ LSC₁₁₃ shows significantly degraded surface activity after long time annealing
- LSC₁₁₃ shows Sr-enriched particles on the surface after annealing

Yang Shao-Horn (MIT) Present work: LSC-214 and LSC-214/LSCF-113

Ab initio Energetics Thermokinetic Modeling

Dane Morgan (U Wisc.) Present work: Defect chemistry of LSC-214

NLEIS + Rate modeling, LSC-214/LSCF-113 porous electrodes

Stuart Adler (U Wash.) Present work: LSCF model, porous LSCF, LSC-113 film

Start date: 10/1/12 (~9 months completed)

Milestones for 2013

Milestone 1 – Synthesize/characterize LSCF-113 and LSC-214/LSCF-113 electrode.

Milestone 4 – Ab-initio simulations of LSC-214 and LSCF-113 defect and cathodic reaction.

Milestone 5 – Single phase continuum modeling of LSCF-113 cathodic reaction.

Non-Linear Impedance Spectroscopy (NLEIS) on LSC-113, LSCF-113

Adler (Univ. Washington)

Electrochemical Measurements

NLEIS example: Explaining unusual LSC thin films

Volume-Specific Capacitance (VSC) of LSC thin films vs. pO2 and thickness

- Enhanced/Suppressed capacitance with LSC-64 like trends
- Large thickness and cell to cell variations

NLEIS on LSC thin films

NLEIS response of 34 nm LSC-82 thin film vs. pO2

- (1) = Thermodynamics of surface and the surface exchange reaction mechanism
- (2) = Thermodynamics of bulk
- Results completely inconsistent with bulk thermodynamic properties of LSC-82.
- Hard to rationalize based on any reasonable rate law and properties under the assumption that the film is single phase perovskite with uniform strontium content.

NLEIS on LSC thin films

Film with homogeneous Sr cannot explain NLEIS data! Explored heterogeneous Sr distributions ...

2 Layer Model

0₂ 0²⁻e⁻

Exponential Layer Model

Dual Surface, Altered Bulk Model

NLEIS on LSC thin films

Dual Surface, Altered Bulk Model

Conclusions

- Capacitance and harmonic response agree well.
- Implies Sr segregation is laterally inhomogeneous.
- O₂-active material for all films has properties of LSC (113) with x ~ 0.45.

Speculation

These films all show precipitation of secondary phases. Could the active material be associated with two-phase saturation/precipitation?

Current Efforts on LSCF

Dense Thin Film Electrode¹

- Fabricated with PLD
- ~5mm x 5mm surface

Porous Electrode

Mixed Conductor (2-3 μ m): La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3- δ}

Ionic Conductor (2-3 mm): Ce_{0.9}Gd_{0.1}O₂

Relatively low surface area

¹Sample provided by Paul Fuoss, Argonne National Laboratory

LSCF: Preliminary Results

LSCF PLD thin film, 650°C vs. pO2

Status

- Stable, well-resolved responses.
- Limited mostly by O₂ exchange with some bulk diffusion.
- Model pending.

LSCF: Preliminary Results

Single-phase Porous LSCF, 750°C vs. pO2

Status

- Over-sintered electrode has poor (but interesting) response.
- Becomes kinetically-limited at low p_{O2} due to small surface area.
- Two features present in EIS and NLEIS. Implies two series processes, both nonlinear.
- Need to optimize fabrication to insure 2nd process is relevant.
- Model pending.

LSC-214 LSC-214/LSCF-113 Films LSCF-113

Yang Shao-Horn (MIT)
Present work: LSC-214 and
LSC-214/LSCF-113

Thermokinetic Modeling

Dane Morgan (U Wisc.)
Present work: Defect chemistry
of LSC-214

NLEIS + Rate modeling, LSC-214/LSCF-113 porous electrodes

Stuart Adler (U Wash.)
Present work: LSCF model, porous
LSCF, LSC-113 film

Start date: 10/1/12 (~9 months completed)

Milestones for 2013

Milestone 1 – Synthesize/characterize LSCF-113 and LSC-214/LSCF-113 electrode.

Milestone 4 – Ab-initio simulations of LSC-214 and LSCF-113 defect and cathodic reaction.

Milestone 5 – Single phase continuum modeling of LSCF-113 cathodic reaction.

Ab Initio modeling of Defect Chemistry in LSC-214

Morgan (Univ. Wisconsin)

Defect chemistry of La_{2-x}Sr_xCoO_{4±δ}

- Bulk defect chemistry of $La_{2-x}Sr_xCoO_{4\pm\delta}$ is less understood that perovksites
 - Both O vac and O int could be active defects for transport and surface reactions
 - Coupling to Sr doping
- Understanding bulk defect chemistry of $La_{2-x}Sr_xCoO_{4\pm\delta}$ as a first step to rationalize fundamental factors that lead to hetero-interface

$(La_{1-x}Sr_x)_2CoO_4$ Defect Energetics

- Crossover of formation free energy of defects at Sr = 0.5 under SOFC conditions
- Strong nonideality (repulsion between same defect type) of defects (~10eV*c)
- Weak interaction between O_{vac}-O_{int}

Two O_{int} configurations in LaSrCoO_△

- O_{int} config. 1: O²⁻ ion in the center of Rocksalt A-site tetrahedra
- O_{int} config. 2: form peroxide (O_2^{2-}) with lattice $O \rightarrow$ does not cause Co oxidation
- Relative stability of the two O_{int} species depends on Sr doping conc.
- Have been suggested experimentally in La₂NiO_{4+δ} (XPS shows no Ni³⁺) and La₂₋ $_{x}$ Sr $_{x}$ CuO $_{4+\delta}$ (eg, missing O from tetrahedral site in neutron scattering)

(Slight Adjusted) DFT Model Predictions for LaSrCoO $_{4+\delta}$

Exp. δ from Vashook, SSI, 2000

- Crossover of O_{int} and O_{vac} concentration vs. P(O₂)
- Good agreement with exp. δ at T=1000 C, but deviates at lower T (experimental errors at small defect concentrations?)

Results Summary

- LSC-113/LSCF-214 shows mild enhancement.
 Difference from LSC-214/LSC-113 may be due to LSC-113 vs. LSCF-113 stability.
- Initial NLEIS on LSCF-113 films and porous electrodes initiated.
- Ab initio studies of LSC-214 shows vacancy/interstitial crossover vs. X_{Sr}, T, and PO₂.

Future Work

- Investigate the surface chemistry, activity, degradation of LSCF-113 and LSC-214/LSCF-113 (why different from LSC-214/LSC-113?)
- Investigate other 214
 decoration candidates
 to achieve the enhanced
 surface activity

- Film growth + Physical characterization (MIT)
- NLEIS + Modeling (Washington Univ.)
- Ab initio stability
 /reaction energies
 (Univ. Wisconsin)

END

Thank you for your attention

Thin-film Characterization of LSC-214/LSCF-113, LSC-113

Shao-Horn (MIT)

Backup

Surface chemistry greatly influences O₂ electrocatalysis at HT

[1] E. Mutoro et al., Energy Environ. Sci., 2011, 3689–3696, E. J. Crumlin, E. Mutoro et al., JPCL 1, 2010, 3149, [2] G. J. la O' et al., Angew. Chem. Int. Ed. 2010, 49, 5344

Surface Exchange Kinetics

$$k^{q} \propto pO_2^{m}$$

Different m value suggests
Different rate limiting steps

m value	p(O ₂) 1atm – 10 ⁻² atm	p(O ₂) 10 ⁻³ atm – 10 ⁻⁵ atm
20nm	0.7	0
37nm	0.31	0
69nm	0.19	0
143nm	0.31	0
248nm	0.41	0

All films show no change of k^q at low $p(O_2)$ (10⁻³ ~ 10⁻⁵ atm)

Pulsed Laser Deposition

PLD

LaSrCoO_{4-δ}

GDC

YSZ

20 – 224 nm

4 - 6 nm

0.5 mm

~ μm

Pulse (x1000)	Thickness (nm)	
1	20	
2	36.5	
5	69	
10	129	
15	224	

X-ray Diffraction Results

- ❖ All films clearly show *c*-axis-oriented epitaxial thin films
- ❖ Off normal XRD shows LSC unit cell on the GDC with 450 rotation

AFM Images (As-deposited)

Comparison with LSC₂₁₄/LSC₁₁₃

Summary

- \clubsuit LaSrCoO_{4- δ} on La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3- δ} epitaxial thin films were deposited by PLD
- ❖ As-deposited films showed smooth surface (RMS < 0.5 nm)
- ❖ LSC₂₁₄ decoration showed slightly enhanced surface activity
- ❖ *VSCs* were not significantly changed by LSC₂₁₄ decoration
- \clubsuit Temperature dependent k^q and surface chemistry will be investigated
- \clubsuit More decoration materials (e.g. other A_2BO_4 , other ABO_3) need to be investigated

Summary

- ♣ LaSrCoO_{4-δ} epitaxial thin films were deposited by PLD
- ❖ As-deposited films showed smooth surface (RMS < 1.5 nm)</p>
- All films show not change of k^q at low $p(O_2)$ (10⁻³ ~ 10⁻⁵ atm)
- Activation energy was dependent on oxygen partial pressure
- Surface chemistry of 37nm and 69nm showed not significant difference
- Defect energetic and surface activity will be more studied

Volume Specific Capacitance

✓ Volume specific capacitance

$$VSC = \left(1/V_{\mu electrode}\right)\left(\left(R_{LF}\right)^{1-n}Q\right)^{1/n}$$

Q = non-ideal "capacitance"
n = non-ideality factor

❖ VSCs do not show significant change by LSC₂₁₄ decoration

LSC₂₁₄ Lattice Parameters

	а	С	â	Ĉ	In-plane strain	Out-of-plane strain
20nm	3.832	12.454	3.811	12.515	0.574	-0.492
36.5nm	3.828	12.467	3.811	12.516	0.457	-0.392
69nm	3.813	12.491	3.808	12.505	0.134	-0.115
129nm	3.806	12.506	3.807	12.503	-0.020	0.017
224nm	3.806	12.512	3.808	12.506	-0.059	0.051

$$\frac{(c-\hat{c})}{\hat{c}} = \frac{-2v}{1-v} \frac{(a-\hat{a})}{\hat{a}}^{1), 2}$$

Assuming

1. $\hat{c}/\hat{a} \approx 3.284$ (based on bulk)³⁾

2. v = 0.3 (perovskite: 0.2 - 0.3)⁴⁾

- ❖ In-plane stain decreases as thickness increases
- Out-of-plane stain increases as thickness increases

¹⁾ Crumlin et al., EES, 5 (2012; 2) Christen et al., PRB, 68 (2003); 3) Demazeau et al., Nouv. J. Chim. 3 (1979);

⁴⁾ Nho et al., APL, 68, (1996)

Nyquist Plot

$$k^{q} = \frac{RT}{4F^{2}R_{LF}A_{electrode}C_{o}}$$

¹⁾ Maier, Phys. Chemistry Ionic Materials, 2004

²⁾ Mizusaki et al., JSSC 1998

Volume Specific Capacitance (VSC)

✓ Volume specific capacitance

$$VSC = \left(1/V_{\mu electrode}\right)\left(\left(R_{LF}\right)^{1-n}Q\right)^{1/n}$$

Q = non-ideal "capacitance"
n = non-ideality factor

- All films show no change of *VSCs* at low $p(O_2)$ (10⁻³ ~ 10⁻⁵ atm)
- ❖ VSCs trend is similar to LSC₁₁₃, which means vacancy but not interstitial

Activation Energy

- \Leftrightarrow At $p(O_2) = 1$ atm, all films show relatively smaller activation energy
- \diamondsuit At $p(O_2)=10^{-3}$ atm, all films show relatively higher activation energy

Oxygen Electrocatalysis on Transition Metal Oxides

Preparation of Epitaxial (001)La_{0.8}Sr_{0.2}CoO₃ (LSC) Films

1. $LaSrCoO_{4-\delta}$ / $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

O₂ electrocatalysis on perovskites at high temperatures

Pulsed Laser Deposition

PLD

LaSrCoO _{4+ō}	,
$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$	
GDC	

0.05 – 5.1 nm 94 nm

4 - 6 nm

0.5 mm

~ µm

LSC214 pulse	Estimated thickness	
10p	0.05 nm	
50p	0.26 nm	
150p	0.78 nm	
500p	2.6 nm	
1k	5.1 nm	

YSZ

Pt Paste

AFM Images (As-deposited)

Electrochemical Impedance Spectroscopy

- Temperature = 550 °C
- pO_2 range = 10^{-3} atm to 1 atm (Ar: O_2 mixture)
- Microelectrode size = 200 μm diameter
- AC amplitude = 10 mV
- DC bias = 0 V

Example: LSC thin films

NLEIS response of 34 nm LSC-82 thin film vs. pO2

- (1) = Thermodynamics of surface and the surface exchange reaction mechanism
- (2) = Thermodynamics of bulk
- Results completely inconsistent with bulk thermodynamic properties of LSC-82.
- Hard to rationalize based on any reasonable rate law and properties under the assumption that the film is single phase perovskite with uniform strontium content.

Nyquist Plot

- \clubsuit LF has large pO_2 dependence
- \clubsuit Estimated critical thickness of LSCF¹⁾ is ~ 9 μ m (500 °C)
- **❖** LSCF is governed by **surface exchange limitation**

Non-Linear Impedance Spectroscopy (NLEIS) on LSC-113, LSCF-113

Adler (Univ. Washington)

Comparison with LSC₂₁₄/LSC₁₁₃

Compared to LSC_{214}/LSC_{113} , LSC_{214} decoration is not much effective to enhance the surface activity of LSCF

Electrochemical Measurements

EIS

- Can separate series rates by timescale.
- Arc resistance related to absolute rates.
- Arc capacitance related to defect concentrations.

NLEIS

- Insensitive to absolute rates (scaled out).
- Sensitive to nonlinearities in rate laws.
 - kinetic/transport mechanisms
 - surface thermodynamic properties
 - bulk thermodynamic properties

Ab Initio modeling of Defect Chemistry in LSC-214

Morgan (Univ. Wisconsin)

Backup

Ab initio based defect thermodynamics

Approximate with Einstein Model

Lee and Morgan PCCP 2012

Literature review for defect chemistry of the RP phases

- Experiment (Neutron diffraction):
 - La₂CoO_{$\Delta+\delta$}: O int, (Le Toquin Physica B 2000)
 - La₂NiO_{4+ δ}: O int, (*Jorgensen PRB 1989; Paulus, SSS, 2002*)
 - $La_2CuO_{4+\delta}$: O int, (Chaillout Physica C 1989)
- Defect models suggested or fit to O nonstoichiometry vs T & P(O₂)
 - $La_{2-x}Sr_xCoO_{4+\delta}$: O vac for understoichiometry (*Vashook, SSI, 2000*)
 - $La_{2-x}Sr_xNiO_{4+\delta}$: O int and O vac; localized and itinerant electron models (*Nakamura SSI 2009*)
 - La_{2-x}Sr_xCuO_{4± δ}: O int and O vac; localized and itinerant electron models (*Opila, J Am. Ceram. Soc.* 1994); O int, O vac, La vac, Cu vac, localized and itinerant electron models (*Kanai JSSC 1997*)
- Theoretical Models
 - La₂CoO_{4+ δ}: O int, <u>DFT and MD</u> (*Kushima PCCP 2011*)
 - − La_{2-x}Sr_xCoO_{4+δ}: O int for x≤ 0.8and O vac for x ≥ 1.2, MD (*Tealdi, J Mater Sci. 2012*)
 - La₂NiO_{$\Delta+\delta$}: O int, MD (*Read, JPCB 1999; Chroneos, J Mater. Sci. 2010*)

Calculation Methods

1. Methods:

- Ab initio code: VASP
- Exchange-correlation functions: GGA+U and hybrids (HSE06)
- Cell choices (slab thickness, lateral dimensions): 56-atom supercell for bulk
- Thermodynamic models (defect chemisty models, oxygen reference chemical potential): **Defect chemistry model for** $(La_{0.5}Sr_{0.5})_2CoO_4$ vs. T and $P(O_2)$
- Activation energy approaches (NEB, drag, dimer method): NEB
- treatment of magnetism (FM, AFM): FM
- treatment of high vs. low-temperature structure: Use FM for high T
- 2. Which properties are being calculated?
 - electronic structures (bands, DOS), defect energetics (O vac, O int, cation vac etc).

$(La_{0.5}Sr_{0.5})_2CoO_4$ Defect Energetics (GGA+U vs. Hybrid Functional)

- HSE O vac formation energy is ~1 eV lower than GGA+U@U_{eff}=3.3 eV
- Two possible O_{int} configurations in (La_{1-x}Sr_x)₂CoO₄ (See next slides)

63

Charge disproportionation energy

- Adjusting charge disproportionation energy alters low T defect concentration P(O₂) dependence
- Suggests further refinement on the defect (charge) energetics.

Empirical fit of defect chem. vs. expt

Concerns with the LSC-214 Data

Vashook, et al. SSI, 2000

- Convex shape vs. 1/T different than other systems and inconsistent with intuitions, DFT
- <1/2 slopes vs. PO₂ at low defect concentrations different from other systems and inconsistent with intuitions, DFT

Perhaps a problem with low T data. Focus on high-temperature results.

Trash

X-ray Diffraction Results

- ❖ All films clearly show *c*-axis-oriented epitaxial thin films
- ❖ Off normal XRD shows LSCF unit cell on the GDC with 45⁰ rotationsc_{113/214}: LSC₂

LSC₁₁₃: La_{0.8}Sr_{0.}

LSC₂₁₄: (La_{0.5}Sr₀