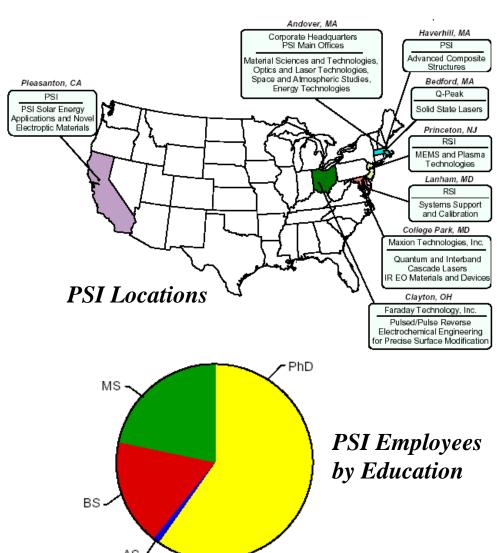


Electrodeposited Mn-Co Alloy Coating for SOFC Interconnects


H.A. McCrabb¹, Savidra Lucatero¹, T.D. Hall¹, H. Zhang², X. Liu², S. Snyder¹, and E.J. Taylor¹

¹Faraday Technology, Inc. 315 Huls Dr., Clayton, OH 45315 ²West Virginia University, Dept. of Mechanical Aerospace Eng. ESB, Morgantown, WV 26506

> 14th Annual SECA Workshop July 24, 2013

Faraday Technology, Inc.

- Faraday Technology specializes in electrochemical engineering
 - www.faradaytechnology.com
- Faraday is a wholly-owned subsidiary of Physical Sciences, Inc. (Boston, MA)
 - www.psicorp.com
 - Collectively, the company staffs ~185 employees - ~100 with PhDs
 - Annual revenue of ~ \$50M

J-4536

Faraday Technology, Inc.

Platform
Technology:
Pulse/Pulse
Reverse Processing

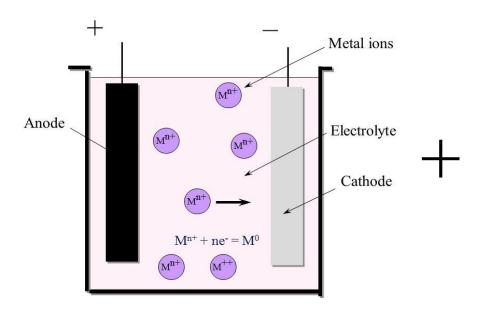
Core Competency:

Design and Engineer of Novel Electrochemical Hardware

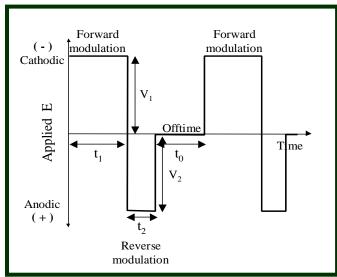
Either may be applied independently to improve current industrial practices or may be combined for a total manufacturing solution

- Electronics
- Edge and Surface Finishing
- Engineered Coatings
- Battery and Fuel Cell Power
- Environmental Systems
- Corrosion and Monitoring Services

- Enables uniform processing
- Applicable for additive or subtractive electrochemical processes
- Uniform processing is achieved over entire substrate, improving end product reliability



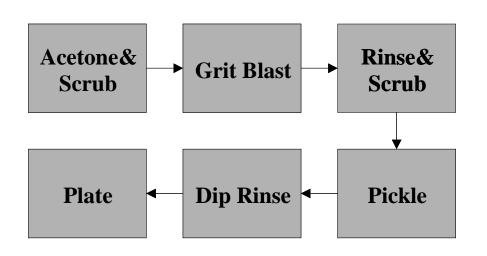
Achievements


- Completed 2000 hour thermal soak evaluation
- Initiated long-term on-cell performance evaluation using 4 cm φ 441 stainless steel button cell
- Demonstrated capability to increase relative Mn content in alloy coating
- Began coating industrial scale interconnects

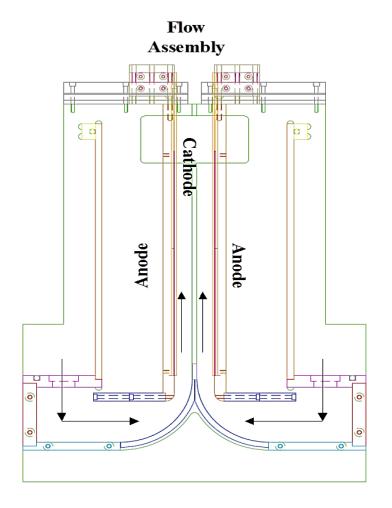
FARADAYIC® Processing

Conventional (DC) Electrodeposition

FARADAYIC® Process


- Fast deposition rates
- Simple deposition equipment
- Non-line-of-sight deposition
- Industrially scalable

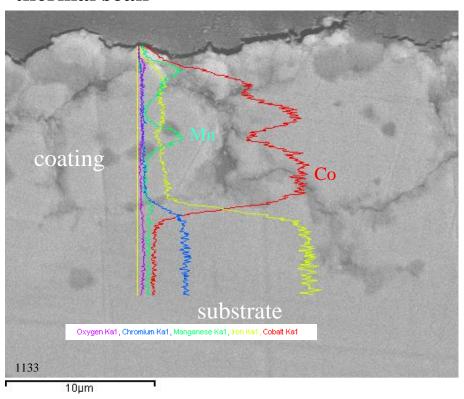
- Improved electric field control
 - Enhanced control of coating thickness uniformity
 - Enhanced control of alloy composition
- Improved coating of "hidden surfaces"



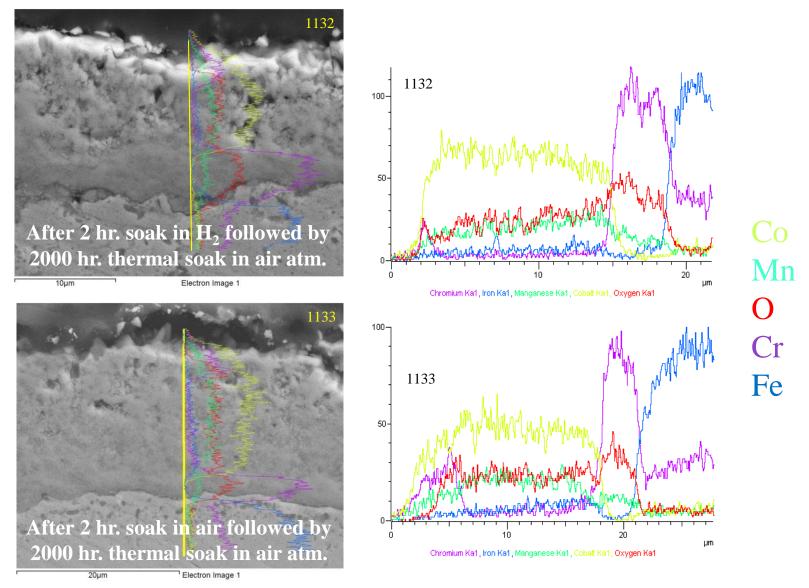
Coating Process

- Surface pretreatment to remove oxide and enhance coating adhesion
- Electrodeposition to coat interconnects with Mn-Co alloy
 - Pulse and pulse reverse electric fields to control deposit properties
- Elevated thermal treatment to convert alloy to spinel

Pilot Scale Electrodeposition Equipment

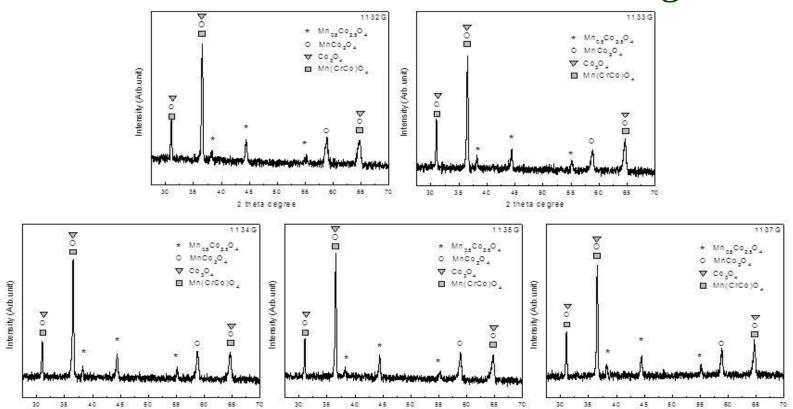

Based upon Faraday's electrochemical cell design that facilitates uniform flow across the surface of a flat substrate (US patent #7,553,401)

2000 Hour Thermal Soak at 800 °C


As deposited

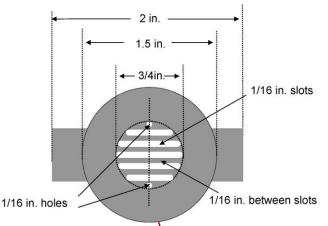
2 hr. thermal treatment in H_2 atm prior to thermal soak

2000 Hour Thermal Soak at 800 °C

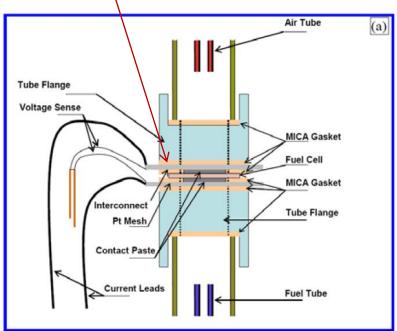


2000 Hour Thermal Soak at 800 °C

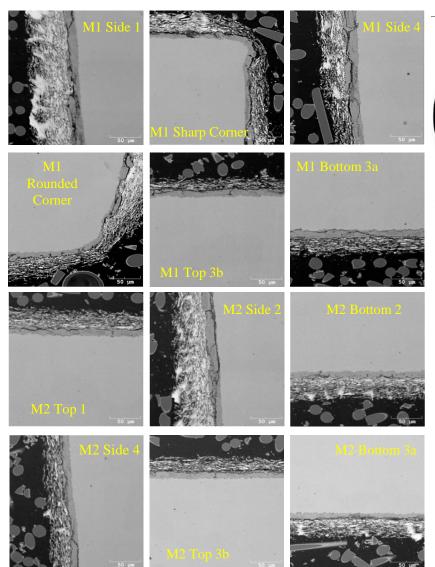
The ASR is $\leq 30 \text{ m}\Omega \text{ cm}^2$ after 2000 hrs. at 800°C

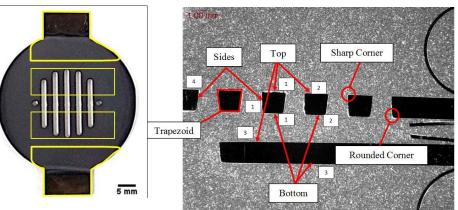

	Sample No.	Thickness Co- Mn/Chromia (μm)	Relative Atomic%		ASR (mΩ·cm²)
			Co	Mn	
H ₂ atm exposure for 2 hours	1132	12/5	89	11	27.6
followed by thermal soak for 2000 h	1136	17/4	92	8	21.6
Air atm exposure for 2 hours followed by thermal soak for 2000 h	1133	14/5	85	15	29.1
	1135	16/6	85	15	30.6
	1137	15/5	85	15	26.0

2000 Hour Thermal Soak Testing

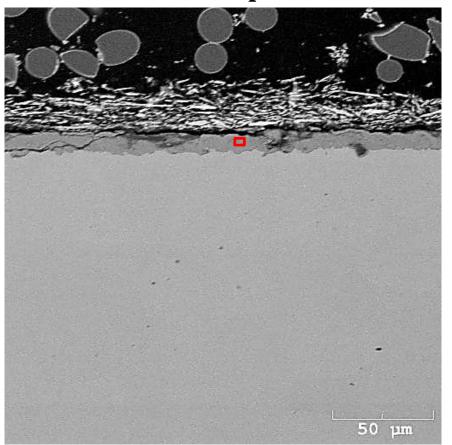


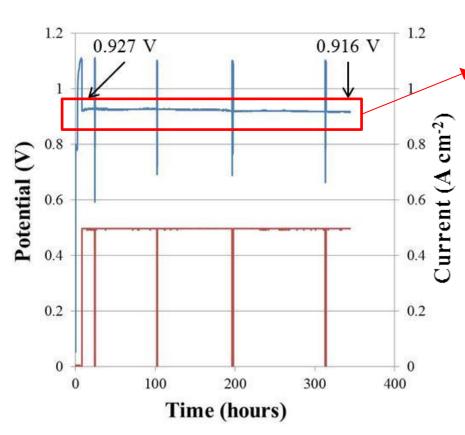
- Mixture of spinel phases
 - Mn_{0.5}Co_{2.5}O₄ and MnCo₂O₄
 - $\operatorname{Co}_3 \operatorname{O}_4$
 - MnCrCoO₄
 - Believed to form from Cr contamination in furnace due to uncoated areas of samples
- Negligible differences observed between samples



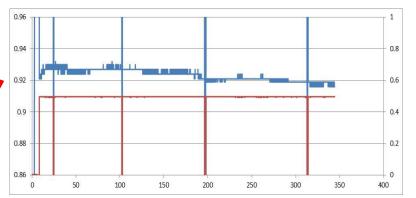


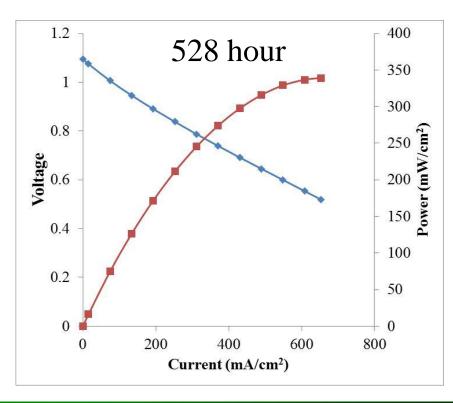
- Faraday deposited Mn-Co coatings onto both sides of button cell
- Samples sent to WVU for long term on-cell testing
- WVU to analyze the coating subsequent to the oncell tests



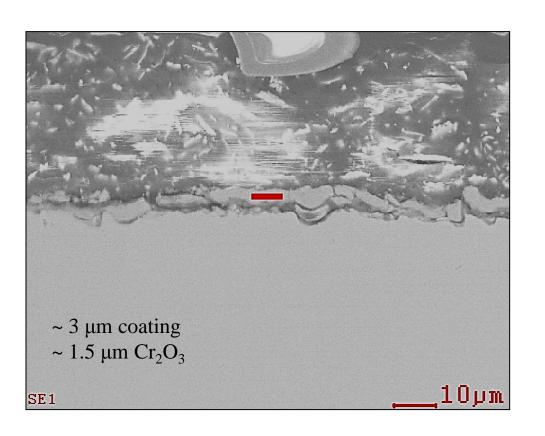


Analysis Location	Coating Thickness (µm)
M1 Side 1	18.5
M1 Sharp Corner	7.8
M1 Side 4	18.9
M1 Rounded Corner	9.0
M1 Top 3b	10.2
M1 Bottom 3a	10.8
M2 Top 1	10.0
M2 Side 1	17.2
M2 Bottom 2	9.9
M2 Side 4	14.8
M2 Top 3b	9.5
M2 Bottom 3a	11.5


M1 Top 2

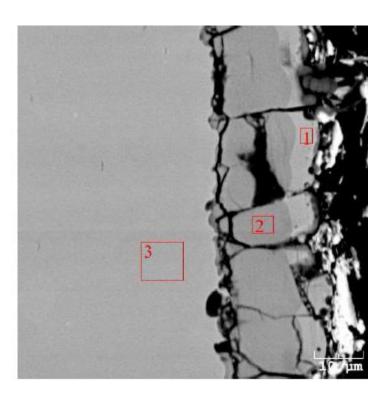


Element	At%	
О	35.1%	
Al	0.3%	
Cr	1.2%	
Mn	8.2%	
Fe	0.9%	
Co	54.2%	


Constant current performance (0.5 A cm⁻²) 1.2 % voltage decay after 344 hr.

Related Program Tasks

Increased free [Mn] in electrolyte plating solution

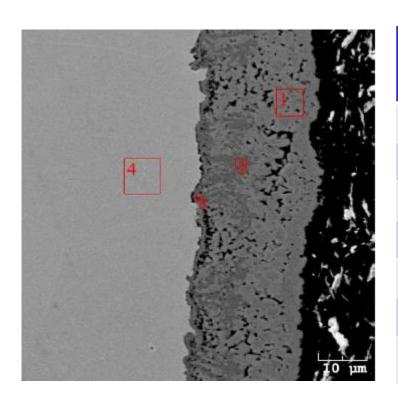


Element	At%	
OK	64.8	
AlK	0.2	
CrK	4.0	
MnK	11.2	
FeK	6.4	
СоК	13.3	

Related Program Tasks

Sequenced waveform to form Co-Mn layer followed by Co rich layer

Before spinel conversion



	Rel. Atomic %			
Element	Spot 1	Spot 2	Spot 3	
O	5.8	12.8	0.7	
Al	0.6	0.9	0.2	
Cr	0.3	0.3	17.7	
Mn	2.8	10.9	0.4	
Fe	0.3	0	80.5	
Co	90.3	75.1	0.5	
Co:Mn	32:1	7:1	N/A (substrate)	

Related Program Tasks

Sequenced waveform to form Co-Mn layer followed by Co rich layer

After spinel conversion

	Rel. Atomic %				
Element	Spot 1	Spot 2	Spot 3	Spot 4	
O	23.9	27.2	24.8	1.4	
Al	0.5	0.4	0.9	0.6	
Cr	1.3	1.5	14.5	17.8	
Mn	4.7	15.2	7.7	0	
Fe	0.1	0.7	10.7	80.1	
Co	69.6	55.1	41.3	0.1	
Co:Mn	15:1	4:1	N/A (Cr scale)	N/A (substrate)	

Future Work

- Complete long-term on-cell performance evaluation of button cells
- Qualification/Demonstration of interconnect coating by industry under SOFC operating conditions

Acknowledgments

- Briggs White and SECA Program Management
- This material is based upon work supported by the Department of Energy under Award Nos. DE-SC0001023 and DE-FE0006165. Any opinions, findings, conclusions and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOE.
- Contact Information:

Heather McCrabb

Ph: 937-836-7749

Email: heathermccrabb@faradaytechnology.com

