

Surface Properties of Substituted Lanthanum Ferrites under SOFC conditions

Michael L. Machala^a, David N. Mueller^a, Farid El Gabaly^b, Hendrik Bluhm^c, and William C. Chueh^a

^a Materials Science and Engineering, Stanford University
^b Sandia National Laboratories, Livermore, CA
^c Advanced Light Source, Lawrence Berkeley National Laboratory
<u>chueh</u>lab.stanford.edu

What's the nature of the active site? What controls ORR activity?

- 1. Identify the nanoscale active phase
- 2. Identify microscopic activity descriptors
- 3. Stabilize the active phase on $(La,Sr)(Co,Fe)O_{3-\delta}$

Ambient Pressure X-ray Spectroscopy

Environmental Transmission Electron Microscopy (TEM)

Surface X-ray Scattering

Size effect of Substitution Atom

Highlights

Ba/Sr substitution gives two surface phases, Ca- only one

Ba segregates to the surface forming a new phase regardless of A/B site ratio

Small A/B site ratio changes in bulk can give significant composition variation on the exposed surface

Changing the oxygen chemical potential by electrochemically biasing affects Ba solubility

In operando Ambient Pressure X-ray Photoelectron Spectroscopy

Synchrotron Source

Ca does not produce two phases

sub-Surface

Binding Energy (eV)

Fe signal is same for all substituents

NIST 82 Database

Size effect of Substitution Atom

AFM of quenched samples : 1Torr O₂

Ba4d signal changes but Fe3p same

Dramatic Ba/Fe variation across samples

Dramatic Ba/Fe variation across samples

Ba surface and sub-surface ratios not changing with stoichiometry

Relative Fe surface enrichment

Electrochemical Biasing : A/B<1

Ba in BaO and Ba in sub-Surface phase vary with electrochemical potential

e-chemical biasing affects solubility of Ba

Future work

Expand in-situ experiments to mixed transition metal (La,AE)(Co,Fe)O_{$3-\delta$}

Fully characterize the surface composition and electronic structure under operating conditions

Develop surface modification methods based on cation-deficient and segregated active phase

Acknowledgements

Graduate Research Fellowship Program Briggs White, Travis Schultz, Joe Stoffa

Core Technology Program

Sandia National Laboratories Tony McDaniel

<u>Advanced Light Source</u> May Ng

Negligible change in Fe2p with bias

24