

Advances in SOFC Development at FuelCell Energy

14th Annual SECA Workshop Pittsburgh, PA July 23-24, 2013

Hossein Ghezel-Ayagh

Ultra-Clean, Efficient, Reliable Power

Introduction

- FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Tower Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
 - 60 kW PCM System
- SOFC Technology Applications
- Summary

Integrated Fuel Cell Company

Design & Manufacture Megawatt-class power generation solutions

Services Over 80 DFC[®] plants operating at more than 50 sites – 1.6 billion kWh ultraclean power produced

Engineering / Construction

Over 300 megawatts installed and in backlog

Direct Sales & via Partners Installations/orders in 9 countries

Global Foundation for Growth

Global footprint solidified

- Asian market expansion / POSCO agreement (\$181M)
- FuelCell Energy Solutions (FCES), GmbH
 - $\circ~$ JV partnership with Fraunhofer IKTS

Trend towards larger installations

- 14.9 MW Bridgeport fuel cell park
- 59 MW fuel cell park in S. Korea

• Increasing annual run-rate in USA by 25%

- Ramping in 2013 to 70 MW annually from 56 MW
- Entered data center market Microsoft project
- Versa Power Systems (SOFC) acquisition
- World's largest renewable biogas fuel cell plant now operating
 - 2.8 MW plant operating at a wastewater treatment facility

FuelCell Energy Solutions Saubere, effiziente, zuverlässige Energie.

Bridgeport Fuel Cell Park

- Five DFC3000 Powerplants produce 14 MW
- Waste heat from powerplants drives Organic Rankine Cycle (ORC) system which produces an additional 930 kW
- Total system nominal capacity 14.93 MW
- Nominal system LHV efficiency ~50%
- Construction in process, startup late 2013
- Project owner is Dominion
- Power purchased by CL&P under 15 year agreement

59 MW Fuel Cell Park

World's largest fuel cell installation

- Located in Hwasung City, S. Korea
- Comprised of 42 modules
- Expected to be fully operational in early 2014

Project being developed by POSCO, Korea Hydro Nuclear Power Co. (KHNP) and Samchully Gas Co in Hwaseong, South Korea

SOFC Cell and Stack Technology Background

- Planar anode supported cells (up to 1000 cm²)
- Capable of operating from 650°C to 800°C
- Ferritic stainless steel sheet metal interconnect
- Cross-flow gas delivery, with integrated manifolding
- Standardized stack blocks configurable into stack towers for various power applications

Coal-Based SECA Program Status

<u>Phase I</u>

- Cell & stack scale-up
- Validation testing of 64-cell stack block (10 kW)
- Pilot manufacturing process development and yield increase

Phase II

- Increased cell performance and endurance combined with cost reduction
- Standardization of 96-cell stack block
- Demonstration of 2-stack tower (30 kW) operation
- Configuration of an IGFC system achieving DOE's performance and cost targets

Phase III

- Increased cell and stack robustness and reliability
- Design, fabrication and tests of a 60kW (peak) stack module
- Design of a natural gas fueled 50 kW Proof-of-Concept (POC) power plant underway

30 kW Stack Tower

60 kW Stack Module

Introduction

- FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview

Progress in SOFC Technology

- Cell Development and Manufacturing
- Stack Development
 - Scale-up and Tower Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
 - 60 kW PCM System
- SOFC Technology Applications
- Summary

- Cell Scale Up
 - Tape casting/Screen Printing/Co-firing (TSC) process has proven flexible enough to allow for cells up to 33 x 33 cm²
 - 25 x 25 cm² cells (550 cm² active area) are the focus for large area stack development
- Cell Process Development
 - Capital equipment for all major process units was added in order to accommodate increased cell size and volume
 - Thin (from 1 mm to 0.6 mm) TSC3 cell manufacturing process development was completed
- Cell Fabrication
 - More than 6000 cells (25 x 25 cm²) have been fabricated
 - Production yield greater than 95% was obtained
 - Production volumes of 500 kW (annual) have been demonstrated

Third Generation of Cell Technology (TSC-3)

Elapsed Time (hours)

Interconnect Coating Studies Using a 32-Cell Stack

Investigated the effect of chromium vapor species on cell degradation by testing a 32 cell stack consisting of both coated and uncoated Interconnects

32 cell Parametric; 61.5 Uf/13.5 Ua 213Amps 25% DIR Furn=700C

Post Test Analysis of the 32-Cell

Stack

Cr Resistant Cell Technology

Cr resistant cell technology has shown promising stability in presence of high humidity

Parametric Stack Test of Blended Cr Resistant Cells

GT055296-0134 TC1 6 Cell PCI - cathode humidity; Test stand 5

Cr resistant cell technology was implemented in short stacks with excellent performance stability and low degradation rates

Chromia Volatility Tests

17

Introduction

- FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing

Stack Development

- Scale-up and Tower Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
 - 60 kW PCM System
- SOFC Technology Applications

Summary

Power Module Scale-Up Using Building Block Approach

Stack Fabrication

Stack Size	2006-2008	2008-2010	2011-2013	Total
Short Stacks 6 - 32 Cells	39	43	29	111
Full Size Stacks > 64 cells	6	9	17	32
Total Quantity	45	52	46	143
Total kW	126	255	349	730

96-cell stack block

stack block

92-cell stack block

Self-Sustained 3-5kW Module Tests

- Rapid prototype tests subject to system conditions
- Identify preferred system operating conditions and controls
- Evaluate performance and thermal profiles as function of fuel composition, extent of internal reforming, and fuel/air utilizations
- Evaluate system level heatup/shut down procedures during normal operation and forced power trip events
- Assess technology developments in a quick turn-around sub-scale testing platform

Lower per pass utilization resulted in:

- Significant on-cell dT increase due to increase in on-cell reforming
- Lower overall cell temperatures
- Significantly higher cell voltage (performance)

Fuel Utilization 75%

- 15 stack blocks (225 kW) were produced in Phase III
- Implemented additional QC steps in stack component preparation and stack build
- Implemented refined stack conditioning procedures
- Key design modifications
 - Decreased stack part counts
 - Eliminated instrumentation plate

- Step 1: Fuel Utilization Curve (before thermal cycle)
 - Load stack to 200 A (0.364 mA/cm²) at 25% instack reforming (DIR)
 - Test at 50% to 75% U_f in 5% increments
 - All cells greater than 0.7 V at 75% U_f
- Step 2: Thermal Cycle
 - Cool to < 150° C
 - Reheat to 750° C
- Step 3: Utilizations are Repeated (after thermal cycle)
 - Reload stack to 200 A (0.364 mA/cm²) at 25%
 DIR
 - Test at 50% to 75% U_f in 5% increments
 - < 10 mV decrease in cell voltage, compared to before thermal cycle
- Step 4: Steady State Hold
 - Stack is held at constant conditions for ≥ 50 hours to verify stable performance of all cells

30kW Stack Tower Test

- Objectives:
 - Thermally self-sustaining test environment
 - Provisions for simulated anode gas representative of both coal-derived syngas and natural gas fueled systems
- Highlights:
 - 3,300 hours on load
 - 3,500 hours hot (>500°C)
 - Max Power: 30.0kW
 - Electricity Generated: 75.2 MWh
 - Multi-stack tower configuration validated under system conditions

2nd Generation Stack Design

- Next generation stack design utilized anode in cell manifold to increase the reliability and robustness:
 - Contact improvement
 - Sealing improvement
 - Cost reduction
- Conceptual stack design including CFD modeling is underway

Stack Cost Reduction

Cost Reduction Focus Areas

1. Stack Performance Increase

- Peak power increase
- Improved thermal management

2. Material Reduction:

- Thinner cells and stack components
- Interconnect material reduction
- Eliminated intermediate plates
- 3. Manufacturing Process Changes & Optimization
 - Interconnect manufacturing development
 - Improved material utilization
 - Automation
 - Elimination of process steps

The fuel cell stack cost has decreased substantially mainly due to the R&D activities in the SECA project.

Introduction

- FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Tower Tests

Proof-of-Concept Module (PCM) Development

- Stack Module
- 60 kW PCM System
- SOFC Technology Applications

Summary

60kW Module Design and Hardware

1. Base

- 2. Towers on a single base forming a "Quad"
- 3. Compression plates
- 4. Anode nozzles
 - A. Anode in
 - B. Anode out
- 5. Insulation
- 6. Cathode-out collector
- 7. Fuel distributor
- 8. Conductive gaskets
- 9. Bus bars

400 kW Power Plant Facility

60 kW module tested in the existing 400 kW Power Plant Facility

- Major Equipment:
 - Anode & Cathode High Temperature Blowers (700°C)
 - High Temperature Recupertors (750°C)
 - Catalytic Oxidizer, Desulfurizers, and Reformer
 - DC-AC Inverter and Switch Gear for Utility Tie-in
- Designed and implemented new control system for 60kW SOFC operation

400kW Facility HMI

- Module screen shows all fuel cell module controls and measurements along with cathode and anode heaters and anode recycle blower
- More than 400 total instrument tags measured and recorded each minute

60 kW SOFC Module

- 60 kW SOFC module using four ~15 kW TSC3 stacks was installed in the grid-connected Power Plant Facility at Danbury, CT.
- 1,130 hours on load
- 1,645 hours hot (above 500° C/932° F)
- Max Power: 60.6 kW
- Electricity Generated: 51.2 MWh

Uniform Voltage Distribution Confirmed the Outstanding 60 kW SOFC Module Design and Stack Blocks Performance.

34

- VPS fabricated and delivered a 10 kW SOFC module to VTT
- Integrated with VTT balance of system at Technical Research Centre of Finland in 2010 using one 10 kW TSC2 stack
- Restacked in 2012 using one 10 kW TSC3 stack

	Design - TSC2 cells -	100 h Average - TSC2 cells -	100 h Average - TSC3 cells -
Stack Current	200 A	200 A	200 A
Cell Voltage	780 mV	772 mV	843 mV
Stack Voltage	49.92 V	49.43 V	53.92 V
Module Power	9.984 kW	9.885 kW	10.785 kW
Fuel Utilization - System	80%	81%	80%
Module Efficiency (LHV)	60%	60%	65%

60 kW VPS SOFC Module – Design v. Performance

Integrated with Wärtsilä balance of system in Finland in 2012 using four ~15 kW TSC2 stacks

	Design	100 h Average - TSC2 cells -
Stack Current	200 A	200 A
Cell Voltage	780 mV	784 mV
Stack Voltage	74.88 V	75.27 V
Module Power	59.90 kW	60.22 kW
Fuel Utilization - System	80%	76%
Module Efficiency (LHV)	59%	59%

PCM System Block Flow Diagram & Performance

	SOFC Proof-of-Concept Module (PCI	M) Syster	m	
	SOFC Gross Power			
	DC Power	70.1	kW	st
N	Energy & Water Input			
Air	Natural Gas Fuel Flow	6.3	scfm	
Fresh Air	Fuel Energy (LHV)	103.4	kW	
Diowei	Water Consumption @ Full Power	0	gpm	
	Consumed Power			
	AC Power Consumption	3.3	kW	DFC Cathode
	Inverter Loss	3.2	kW	
	Total Parasitic Power Consumption	6.5	kW	OFC Anode
	Net Generation			
	SOFC Plant Net AC Output	63.6	kW	
Fuel Gas Desulfu	Available Heat for CHP (to 120°F)	22.6	kW	
V	Efficiency			Fuel Preheater
Startup Water	Electrical Efficiency (LHV)	61.6	%	ss oon
V	Total CHP Efficiency (LHV) to 120°F	83.4	%	pcess Loop

PCM system is designed to lay the foundation for market entry 60 kW (peak) SOFC product operating on natural gas and biogas.

- 18' L x 8' W x 10' H
- Stack Module, MBoP, & EBoP factory assembled: shipped as a single skid
- Field-removable enclosure
 - Protects equipment from the elements
 - Enables field maintenance access without returning the entire unit to the factory

2nd Generation 60kW Module Design

- Utilizes proven designs which have been validated in testing
 - Quad base stack support
 - Fuel and oxidant distribution/collection system
- 2nd generation design improvements for PCM
 - Integrated balance-of-plant components
 - Significant reduction in heat loss
 - Reduced plant cost

Introduction

- FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Tower Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
 - 60 kW PCM System
- SOFC Technology Applications
- Summary

Net AC Output (Peak)3,138 WEfficiency (LHV)58.4%

Small Footprint: 3.5' x 3' x 5'

Project supported by US Department of Energy (DOE):

- Demonstration of 3 kW SOFC on a Dairy farm to operate with biogas from animal waste.
- Unattended operation
- Dual fuel (Natural gas & Biogas)
- Water self-sufficient
- Plug and Play with Remote monitoring

Office of Naval Research (ONR):

- Develop a compact hybrid SOFC-battery system with high-energy density/high-peak power capabilities, specifically designed for Large Displacement Unmanned Underwater Vehicle (LDUUV) service
 - > SOFC provides base load power
 - > No discharge: CO₂ and water stored on board

DARPA/Boeing:

- DARPA Vulture II Project
 - > Develop a light-weight high-efficiency energy storage subsystem for uninterrupted intelligence and surveillance over an area of interest.

High Power Density Stack

Evolution of the planar SOFC stack technology: From largest "power rating" in the world to super high "power density"

- Achieved 10x improvement in specific power (W/kg)
- Demonstrated operational endurance of over 7000 hours in a 60 cell stack

Introduction

- **FCE SECA Program Team Members**
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Tower Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
 - 60 kW PCM System
- SOFC Technology Applications

Summary

Significant advances made in SOFC technology as the result of SECA Coal Based Program will increase the prospects for future natural gas system products.

- Cell Technology
 - Performance enhancement (18% increase at 650°C)
 - Degradation reduction (1.4%/1000 hrs. \rightarrow 0.3%/1000 hrs.)
 - Scale up (121 cm² → 1000 cm²)
 - Low cost (1 mm \rightarrow 0.57 mm)
 - Cr resistant technologies developed
- Stack Technology
 - Scale Up (1 kW \rightarrow 15 kW)
 - Performance enhancement (7-8% increase)
 - Degradation reduction (2%/1000 hrs \rightarrow 0.4%/1000 hrs)
 - Reduced Cost

System Development

- Largest anode supported SOFC module to date (60 kW) was designed, fabricated and tested in a self-sustaining grid-connected mode
- Detailed design of a 60kW (peak) system is underway

The "SECA Coal-Based Systems" development at FuelCell Energy is supported by DOE/NETL Cooperative Agreement No. DE-FC26-04NT41837

Guidance from NETL Management team: Travis Shultz, Shailesh Vora, and Heather Quedenfeld

