

D	e	p	0

Glass Optimization

> No crystallization in Glass 102 after heat treatment at 800°C in air

Glass 102				
800C 500hr				
	500μm 			
800C 1248hr	· · ·			
	500μm 			
800C 2000hr				
	500µm			

	2500				
	3500				
	3000	_			
	2500	(573		
nsity	2000			1.1	
Inte	1500	-	mll,	الماللا	
	1000		all and the		•••
	500	_	G10	2	
	0	10	20)	30

> XRD confirms no crystallization in Glass 102 after >2000 hr heat treatment at operational temperatures

High-Temperature Viscous Sealing Glasses for Solid Oxide Fuel Cells

Cheol-Woon (CW) Kim, Joe Szabo, Ray Crouch, and Rob Baird MO-SCI Corporation, Rolla, MO; ckim@mo-sci.com

Richard K. Brow, Jen Hsien Hsu, Casey Townsend, and Raphael Reis artment of Materials Science and Engineering and the Graduate Center for Materials Research Missouri University of Science and Technology, Rolla, MO; brow@mst.edu

> Develop glass compositions that exhibit stable thermomechanical/ thermochemical properties, including viscosity, for use as seals for SOFCs a) Long-term stability in viscosity (650-850°C) c) T_{soft} : < 650°C: requisite flow for re-sealing behavior d) T_{Lig} : < 800°C (as low as possible): stable, a small volume fraction of crystals e) CTE(RT-subT_g): 10-12.5×10⁻⁶/°C (YSZ- SS441)

Promising compositions were identified

Preferred Compositions Exhibit Promising Sealing Behavior

	Phase I		Phase II				
	Glass 2	Glass 4	Glass 28	Glass 73	Glass 75	Glass 77	Glass 102
Glass system	BaO-B ₂	O ₃ -SiO ₂	$BaO-RO-Al_2O_3-B_2O_3$		BaO-RO-A	N ₂ O ₃ -B ₂ O ₃ -Si	O ₂
T _g (°C) measured from CTE curve	619	599	581	624	623	625	604
Dilatometric T _s (°C)	650	632	615	640	650	656	639
CTE 40-500°C (/°C)	8.19x10 ⁻⁶	7.32x10 ⁻⁶	7.48x10 ⁻⁶	8.48x10 ⁻⁶	8.17x10 ⁻⁶	9.25x10 ⁻⁶	7.25x10 ⁻⁶
Liquidus T (°C)	805	790	795	800	810	810	Non-Crystallizing

Stable Viscosity

> Viscosity measurements provide valuable performance information

Re-Sealing Tests (ex-situ)

Seal originally found Glass seal deliberately cracked by Crack healed after re-heating high cooling rate quench (>25°C/s) to 725°C for 2 hrs

Glass Optimization-cont.

Stable viscosity of Glass 102 after 2000 hr heat treatment at 800°C

Re-Sealing Tests-cont. (ex-situ)

Temperature (°C)	Time (hr)	Observation	Viscosity log(η) (Pa-s)
800	2	Healed	3.7
750	2	Healed	5.1
725	2	Healed	5.9
700	2	Healed once, but not a second time	6.9

Glass	Fitt Paran	T _g (°C)	
	m	T _g (°C)	Dilatometri
Glass 73 as-cast	64.1	606	624

Glass Optimization-cont.

Glass 102 coupon seal heat treated 2280 hr at 800°C in air > Excellent wetting and bonding to both aluminized metal and YSZ

- Glass is homogeneous
- > No crystals in glass
- \geq BaAl₂Si₂O₈ layer at glass/metal interface

- High temperature measurements (1-10⁴ Pa-s) by the rotating spindle technique
- Low temperature measurements (10⁵-10¹¹ Pa-s) by the parallel plate technique
- Viscosity-temperature curves fit using the MYEGA viscosity model (JC Mauro, PNAS, 2009)

> No significant elements from metal or ceramics diffusing into glass

Long-Term Reactivity Characterization

Glass 73 reaction couple: 103 Thermal cycles (750°C to RT) Excellent wetting and bonding to both aluminized metal and YSZ Man Munderman

> No major Cr or Fe migration to glass seal Some Al migration to the interface of glass seal or to ceramic substrate

On-going & Planned Work

- > Determine electrical stability of viscous seals
- Study long-term viscous behavior
- Characterize long-term thermochemical reactions
- Hermeticity and 're-sealing' behavior

Acknowledgements

- > SECA
- DOE SBIR Phase II Contract # DE-SC0002491
- > DOE Project Officer: Dr. Joseph Stoffa, NETL
- > Dr. Yeong-Shyung Matt Chou/Dr. Jeff Stevenson, PNNL

DOE SBIR Phase II Contract # DE-SC0002491

