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Motivation – applications of turbines 
 Turbine engines – key for energy generation and propulsion 

2007 Energy Generation Statistics (DOE) 

~50%

Major power 
generation 

techniques need 
turbine engines 
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Motivation – need for wireless strain sensors 
 Many parts in turbine engines subjected to severe strain/stress 

in extreme environments 
 Strain sensors 
 Predict the failure 
 Reduce unnecessary out-of-service examination and replacement 

 Moving parts/hidden areas – need wireless
 High temperatures – need passive 
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State of the Art
 Optical-Based Non-Contact Sensors 

 Lack of necessary accuracy
 Not robust in harsh environments

 Strain gage
 Piezoresistivity – changes in resistivity with strain/stress
 Cannot be wireless

 Piezoelectric based load cell
 Can be wireless
 Piezoelectric materials cannot be used to high temperatures

 Capacitive based pressure sensor
 Can measure pressure induced strain/stress
 Cannot measure strain/stress of parts
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 Overall Objective 
Develop wireless passive polymer-derived ceramic strain/stress 

sensors based on cavity RF resonator
 Scientific Goals

 Develop piezo-dielectric polymer-derived ceramics (p-PDCs)
 Design and fabricate resonator sensors
 Characterize the sensors in extreme environments

Passive Ceramic Sensor

Objectives

Passive Ceramic Sensor

f0(S)
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Background – polymer-derived ceramics
Precursor Polymer

devices Ceramic devices
Micro

fabrication
Pyrolysis

 Excellent high-temperature resistance
 High thermal stability
 Excellent high-temperature mechanical properties
 High oxidation/corrosion resistance

 Microfabrication capability

 Unique electric/dielectric behavior 
 Resistivity varied in a large range
 High piezoresistivity
 High piezo-dielectricity
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Schedule and Timeline
10/2011-09/2012 10/2012-09/2013 10/2013-09/2014

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Task 1: Research 
Management Plan

Task 2: Materials 
development

Task 3: Sensor design 
and Fabrication

Task 4: Sensor testing

Milestone Planned Completion Date Verification Method

1: Finish room temperature material selection 06/30/2012 Report

2: Finish first run of sensor design 09/30/2012 Report 

3: Finish final material selection 03/31/2013 Report 

4: Finish final sensor design 09/30/2013 Report 

5: Sensor fabrication 12/31/2013 Report 
Prototype

6: Sensor characterization 09/30/2014 Report 
Prototype 

Finished
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Accomplishments
 Material development

 Starting chemicals

• Polysilazane (HTT1800) – main precursor

• Phenylbis (2, 4, 6-trimethylbenzoyl) phosphine oxide (819) – photo initiator 

• Dicumyl peroxide (DP) – thermal initiator

• Methacrylic Acid (MA) – photopolymerization enhancer 

• Aluminum-tri-sec-butoxide (ASB) – precursor for Al

• Poly (melamine-co-formaldehyde) acrylated solution (PVN) –precursor for N 
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SiAlCN ceramic fabrication

Thermal curing method 
(TCM)

Photo curing method  
(PCM)
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Name MA ASB 819 HTT1800 PVN

S-1 2 wt% 5 wt% 5 wt% 78 wt% 10 wt%
S-2 2 wt% 5 wt% 5 wt% 68 wt% 20 wt%
S-3 2 wt% 5 wt% 5 wt% 58 wt% 30 wt%
S-4 2 wt% 10 wt% 5 wt% 53 wt% 30 wt%
S-5 2 wt% 20 wt% 5 wt% 43 wt% 30 wt%

Materials synthesized

Name ASB DP HTT1800
S-6 5 wt% 5 wt% 90 wt%
S-7 1 wt% 0 wt% 99 wt%
S-8 5 wt% 0 wt% 95 wt%
S-9 10 wt% 0 wt% 90 wt%
S-10 1 wt% 2 wt% 97 wt%

TCM

PCM
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Dielectric property measurements

F, Q
Empty cavity

F0, Q0
Empty cavity

Dielectric 
Ceramic

Detected by network analyzer
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Properties

Name S-1 S-2 S-3 S-6 S-7 S-8 S-9 S-10

Dielectric 
constant

4.87 6.66 7.40 4.45 3.6 3.55 3.85 4.8

Dielectric loss 0.042 0.083 0.21 0.0085 0.0045 0.0046 0.0046 0.0045

Frequency 
(GHz)

9.767 9.743 9.718 8.826 9.028 9.221 9.337 9.0035

Q-factor 1452 978 445 557 1126 1370 1676 1386

S-1 S-2 S-3 S-6 S-7 S-8 S-9 S-10
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 Sensor design
 Proposed sensor structure

Factors that affect the Q-factor:
Thickness of metal skin
Size of the substrat (Lc and Wc)
Size of the slot (La and Wa)
Position of the slot (Xa)
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 Effect of metal skin thickness 

Metal skin thickness has no effect on Q-factor when it > 20 m
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 Effect of geometries of the slots and substrate

urL QQQ

111


QL: Loaded Q-factor, considered overall effect
Qr: Radiation Q-factor, from slot antenna
QU: unloaded Q-factor, dielectric ceramic and metal loss

Calculated SimulatedNeed to design
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Maximum energy coupling: 

Qr = QU
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uLr QQQ

111


 Q-factor decreases with increasing L or W –
more radiation energy loss

 Q-factor increases with increasing Xa

 Effect of geometries of the slots and substrate

Size and position of slot antenna 



Future work
 Material development

 Characterize high-temperature material properties 

 Design and fabricate sensors
 Final design the resonator based strain sensors
 Fabricate the designed sensors

 Sensor characterization
 Pack the sensor for testing
 Test the sensors in different temperatures



Summary
 Polymer-derived ceramics possess necessary properties for making wireless, 

passive strain/stress sensors for high-temperature applications.

 We have finished materials selection.

 We have finished initial sensor design. 

 The R&D progress follows the proposed schedule.  




