

Wireless, Passive Ceramic Strain Sensors for Turbine Engine Applications

Gang Shao and Linan An

Advanced Materials Processing and Analysis Center (AMPAC) Department of Materials Science and Engineering (MSE) University of Central Florida Orlando, FL 32816

Outline

- Motivation
- Strain Sensors State of the Art
- Objectives
- Schedule and timelines
- Accomplishment
- Future Work
- Summary

Motivation – applications of turbines

■ Turbine engines – key for energy generation and propulsion

Description	2007							
Net Generation (thousand megawatthours)								
Coal <u>[1]</u>	2,016,456							
Petroleum[2]	65,739							
Natural Gas	896,590							
Other Gases[3]	13,453							
Nuclear	806,425							
Hydroelectric Conventional[4]	247,510							
Other Renewables[5]	105,238							
Wind	34,450							
Solar Thermal and Photovoltaic	612							
Wood and Wood Derived Fuels[6]	39,014							
Geothermal	14,637							
Other Biomass[7]	16,525							
Pumped Storage[8]	-6,896							
Other[9]	12,231							
All Energy Sources	4,156,745							

Major power generation techniques need turbine engines

2007 Energy Generation Statistics (DOE)

Motivation – need for wireless strain sensors

- Many parts in turbine engines subjected to severe strain/stress in extreme environments
- Strain sensors
- Predict the failure
- Reduce unnecessary out-of-service examination and replacement
- Moving parts/hidden areas need wireless
- High temperatures need passive

State of the Art

- Optical-Based Non-Contact Sensors
 - \Box Lack of necessary accuracy
 - □ Not robust in harsh environments
- Strain gage
 - □ Piezoresistivity changes in resistivity with strain/stress
 - □ Cannot be wireless
- Piezoelectric based load cell
 - \Box Can be wireless
 - □ Piezoelectric materials cannot be used to high temperatures
- Capacitive based pressure sensor
 - □ Can measure pressure induced strain/stress
 - □ Cannot measure strain/stress of parts

Objectives

Overall Objective

Develop wireless passive polymer-derived ceramic strain/stress sensors based on cavity RF resonator

- Scientific Goals
 - □ Develop piezo-dielectric polymer-derived ceramics (p-PDCs)
 - Design and fabricate resonator sensors
 - □ Characterize the sensors in extreme environments

Background – polymer-derived ceramics

- Excellent high-temperature resistance
 - □ High thermal stability
 - □ Excellent high-temperature mechanical properties
 - □ High oxidation/corrosion resistance
- Microfabrication capability
- Unique electric/dielectric behavior
 - □ Resistivity varied in a large range
 - □ High piezoresistivity
 - □ High piezo-dielectricity

Schedule and Timeline

	10/2011-09/2012			10/2012-09/2013			10/2013-09/2014					
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Task 1: Research Management Plan							1					
Task 2: Materials development												
Task 3: Sensor design and Fabrication							1					
Task 4: Sensor testing												

Milestone	Planned Completion Date	Verification Method	
 1: Finish room temperature material selection	06/30/2012	Report	
2: Finish first run of sensor design	09/30/2012	Report	Finished
3: Finish final material selection	03/31/2013	Report	
4: Finish final sensor design	09/30/2013	Report	
5: Sensor fabrication	12/31/2013	Report	
		Prototype	
6: Sensor characterization	09/30/2014	Report	
		Prototype	

Accomplishments

- Material development
 - □ Starting chemicals
 - Polysilazane (HTT1800) main precursor
 - Phenylbis (2, 4, 6-trimethylbenzoyl) phosphine oxide (819) photo initiator
 - Dicumyl peroxide (DP) thermal initiator
 - Methacrylic Acid (MA) photopolymerization enhancer
 - Aluminum-tri-sec-butoxide (ASB) precursor for Al
 - Poly (melamine-co-formaldehyde) acrylated solution (PVN) -precursor for N

SiAlCN ceramic fabrication

□Materials synthesized

Name	MA	ASB	819	HTT1800	PVN
S-1	2 wt%	5 wt%	5 wt%	78 wt%	10 wt%
S-2	2 wt%	5 wt%	5 wt%	68 wt%	20 wt%
S-3	2 wt%	5 wt%	5 wt%	58 wt%	30 wt%
S-4	2 wt%	10 wt%	5 wt%	53 wt%	30 wt%
S-5	2 wt%	20 wt%	5 wt%	43 wt%	30 wt%

TCM

Name	ASB	DP	HTT1800
S-6	5 wt%	5 wt%	90 wt%
S-7	1 wt%	0 wt%	99 wt%
S-8	5 wt%	0 wt%	95 wt%
S-9	10 wt%	0 wt%	90 wt%
S-10	1 wt%	2 wt%	97 wt%

Dielectric property measurements

12

	rties		~	>_	~~ -			
		PC	N	Т	CM			
Name	S-1	S-2	S-3	S-6	S-7	S-8	S-9	S-10
Dielectric constant	4.87	6.66	7.40	4.45	3.6	3.55	3.85	4.8
Dielectric loss	0.042	0.083	0.21	0.0085	0.0045	0.0046	0.0046	0.0045
Frequency (GHz)	9.767	9.743	9.718	8.826	9.028	9.221	9.337	9.0035
Q-factor	1452	978	445	557	1126	1370	1676	1386
High E Low F Easy to detect		7.5 0.7			 Dielectric cons Dielectric loss 	e 0.25 0.20 0.15 0.10 0.05 0.008 0.008	Hig	چ gh ٤ v loss
High S-to-N Easy to det	N ratio ect	3.5 - - - S-1	S-2 S-3	S-6 S-7 Sample #	S-8 S-9	-■ - 0.004 		13

Factors that affect the Q-factor:
✓ Thickness of metal skin
✓ Size of the substrat (Lc and Wc)
✓ Size of the slot (La and Wa)

✓ Position of the slot (Xa)

□ Effect of metal skin thickness

Metal skin thickness has no effect on Q-factor when it > 20 μ m

□ Effect of geometries of the slots and substrate

Q_L: Loaded Q-factor, considered overall effect
Q_r: Radiation Q-factor, from slot antenna
Q_v: unloaded Q-factor, dielectric ceramic and metal loss

Effect of geometries of the slots and substrate

$$Q_{L}$$

$$Q_{L} = \frac{f_{0}}{\Delta f_{3dB}} \frac{1}{1 - mag(S_{21}(\omega_{0}))} \quad f_{0} = \frac{1}{2\pi\sqrt{\varepsilon_{0}\mu_{0}\varepsilon_{r}}} \frac{\chi_{01}}{r}$$

$$Q_{U}$$

$$Q_{U} = (\frac{1}{Q_{SICN}} + \frac{1}{Q_{Ag}})^{-1}$$

$$\frac{1}{Q_{r}} = \frac{1}{Q_{L}} - \frac{1}{Q_{u}}$$

Maximum energy coupling:

 $Q_r = Q_U$

□ Effect of geometries of the slots and substrate

Size and position of slot antenna

✓ Q-factor decreases with increasing L or W – more radiation energy loss

✓ Q-factor increases with increasing Xa

Future work

- Material development
 - □ Characterize high-temperature material properties
- Design and fabricate sensors
 - □ Final design the resonator based strain sensors
 - □ Fabricate the designed sensors
- Sensor characterization
 - \Box Pack the sensor for testing
 - □ Test the sensors in different temperatures

UCF

Summary

- Polymer-derived ceramics possess necessary properties for making wireless, passive strain/stress sensors for high-temperature applications.
- We have finished materials selection.
- We have finished initial sensor design.
- The R&D progress follows the proposed schedule.

THANK YOU!