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Motivation — applications of turbines

m Turbine engines — key for energy generation and propulsion

Drescription 2007

Net Generation (thousand megawatthours)

Coalll] 2,016,456

Fetroleum[z] fh, 739

Matural Gas 296,540

Other Gases[3] 13,453

Muclear 06,4245

Hydroelectric Comentional[4] 247 410 ]

Other Renewahbles[s] 105,238 Major power
Wind 34,450 .

Solar Thermal and Photovaoltaic 612 gen eratlon
YWood and Wood Derived Fuels]g] 39,014 tEChanueS need
Geothermal 14,637 . .

Other Biomass[f] 16,525 turbine engines
Fumped Storage[8] -6,8496

Other[9] 12,231

All Energy Sources 4,156,745

2007 Energy Generation Statistics (DOE)
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Motivation — need for wireless strain sensors

m Many parts in turbine engines subjected to severe strain/stress
In extreme environments

Strain sensors
Predict the failure
Reduce unnecessary out-of-service examination and replacement

Moving parts/hidden areas — need wireless
High temperatures — need passive
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State of the Art

m Optical-Based Non-Contact Sensors
Lack of necessary accuracy
Not robust in harsh environments
m Strain gage
Piezoresistivity — changes in resistivity with strain/stress
Cannot be wireless
m Piezoelectric based load cell
Can be wireless
Piezoelectric materials cannot be used to high temperatures
m Capacitive based pressure sensor

Can measure pressure induced strain/stress
Cannot measure strain/stress of parts
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ODbjectives

m Overall Objective

Develop wireless passive polymer-derived ceramic strain/stress
sensors based on cavity RF resonator

m Scientific Goals
Develop piezo-dielectric polymer-derived ceramics (p-PDCs)

Design and fabricate resonator sensors
Characterize the sensors in extreme environments

Combustion
chamber

Passive Ceramic Sensor
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Background — polymer-derived ceramics

Micro f Polymer ] Pyrolysis J . .
Precursor J fabrication L devices J LCeramlc devices

m Excellent high-temperature resistance
High thermal stability
Excellent high-temperature mechanical properties
High oxidation/corrosion resistance

m Microfabrication capability

m Unique electric/dielectric behavior
Resistivity varied in a large range
High piezoresistivity
High piezo-dielectricity
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Schedule and Timeline

10/2011-09/2012

10/2012-09/2013

10/2013-09/2014

Task 1: Research
Management Plan

Task 2: Materials
development

Task 3: Sensor design
and Fabrication

Task 4: Sensor testing

Q10 [ Q11 [ Q12

UCF

ished

Milestone Planned Completion Date | Verification Method
1: Finish room temperature material selection 06/30/2012 Report
2: Finish first run of sensor design 09/30/2012 Report Fin
3: Finish final material selection 03/31/2013 Report
4: Finish final sensor design 09/30/2013 Report
5: Sensor fabrication 12/31/2013 Report
Prototype
6: Sensor characterization 09/30/2014 Report
Prototype
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Accomplishments

m Material development

Starting chemicals

* Polysilazane (HTT1800) — main precursor

e Phenylbis (2, 4, 6-trimethylbenzoyl) phosphine oxide (819) — photo initiator
e Dicumyl peroxide (DP) — thermal initiator

* Methacrylic Acid (MA) — photopolymerization enhancer

e Aluminum-tri-sec-butoxide (ASB) — precursor for Al

* Poly (melamine-co-formaldehyde) acrylated solution (PVN) —precursor for N



SIAICN ceramic fabrication

Photo curing method
(PCM)

Jq—[BD”C, S00RPM, 40min

(add ASB, 80°C, GDDRPrﬂ

HTT1800
A

A0min
b

'ﬁdd 819, 80°C, ‘lDDDRPM\

Smin, then 300RPM Smin,
“ in amber

A A

(Add MA, 80°C, 1000RPM]
overnight, close lid

A

Mixture 4"

fufacuum, 60min ]

Mixture 5"

{UV cure Smin ]

Solid polymer

Sintering, 1000°C,
240min
[ SiAICN Ceramic ]

UCF

Thermal curing method

(TCM)

|H'I'I'1800
L.

ASB

Mixture 1

Mixture 2

S-PDC

. [120°C, 24 hours ]

- rAdd DP under ultrasonic ]

‘_rCrosinnk at 150°C, 24 hours]

[S-PDC powder |g——Ball milling for 30min

Greensample 1—[Compressto disc sample

4———] Sintering, 1000°C, 240min ]

[ SIAICN Ceramic
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| TCM |
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Materials synthesized
Name MA ASB 819 HTT1800 PVN
S-1 2 wt% 5 wt% 5 wt% 78 wt% | 10 wt%
S-2 2 wt% 5 wt% 5 wt% 68 wt% | 20 wt%
S-3 2 wt% 5 wt% 5 wt% S8 wt% | 30 wt%
S-4 2 wt% 10 wt% 5 wt% S3wt% | 30 wt%
S-5 2 wt% 20 wt% 5 wt% 43 wt% | 30 wt%
Name ASB DP HTT1800
S-6 5 wt% 5 wt% 90 wt%
S-7 1 wt% 0 wt% 99 wt%
S-8 5 wt% 0 wt% 95 wt%
S-9 10 wt% 0 wt% 90 wt%
S-10 1 wt% 2 wt% 97 wt%

11
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“1Dielectric property measurements

Waveguide
cavity.

Dielectric
Ceramic

Measured F Matched F
and Qv and Qv

[ :__":-

Fo, QO F’ Q
Empty cavity Empty cavity

v

Detected by network analyzer
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C1Properties PCMQ -—q--> TCM
Name S-1 $-2 $-3 $-6 S-7 S-8 S-9 T
Dielectric 4.87 6.66 7.40 4.45 3.6 3.55 3.85 4.8
constant
Dielectric loss 0.042 0.083 0.21 0.0085 0.0045 0.0046 0.0046 0.0045
Frequency 0.767 0.743 9.718 8.826 9.028 9.221 9.337 9.0035 :
(GHz)
Q-factor 1452 978 445 557 1126 1370 1676 1386
N -m- Dielectric constant
High & > Speerobss Moo b
Low F
Easy to detect .
y High €
Low loss

Low loss

High S-to-N rati
Easy to detect
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m Sensor design
Proposed sensor structure

»
g

Slot 4 v We
antenna
<>
|

Factors that affect the Q-factor:
v'Thickness of metal skin

v'Size of the substrat (Lc and Wc)
v'Size of the slot (La and Wa)
v'Position of the slot (Xa)

Qext —

14
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Effect of metal skin thickness

120 -
100:
80:
60 -

40 -

20 T T T v T v I v I v I
0 10 20 30 40 50

Silver thickness(pum)

Metal skin thickness has no effect on Q-factor when it > 20 um
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Effect of geometries of the slots and substrate

1 1 1
— = — 4+ —
/QL Qr Qu
Calculated Need to design Simulated

Q.: Loaded Q-factor, considered overall effect
Qr: Radiation Q-factor, from slot antenna
Qu: unloaded Q-factor, dielectric ceramic and metal loss
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Effect of geometries of the slots and substrate

Q. o f 1 - 1 Yot
- Af,. 1-mag(S,(m,)) 27\ EplyE, T
1 1,
QU %= (QSiCN i QAg )
11 1
&, &, &,

Maximum energy coupling:

Qr=QU
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Effect of geometries of the slots and substrate
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more radiation energy loss

v Q-factor increases with increasing Xa
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Future work

m Material development
Characterize high-temperature material properties

m Design and fabricate sensors
Final design the resonator based strain sensors
Fabricate the designed sensors

m Sensor characterization
Pack the sensor for testing
Test the sensors in different temperatures
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Summary

m Polymer-derived ceramics possess necessary properties for making wireless,
passive strain/stress sensors for high-temperature applications.

m  We have finished materials selection.
m \We have finished initial sensor design.

m The R&D progress follows the proposed schedule.
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THANK YOU!



