

CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Plants

Hamid Arastoopour

Linden Professor of Engineering and Director of Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology, Chicago, IL

Our team

- Prof. Hamid Arastoopour (PI)
- Prof. Javad Abbasian (Co-PI)
 - Emad Abbasi (PhD Candidate)
 - Shahin Zarghami (PhD Candidate)
 - Emad Ghadirian (PhD Student)
 - Jaya Singh (PhD Student)

Program Objective

The overall objective of the program is to develop a Computational Fluid Dynamic (CFD) model and to perform CFD simulations to describe the heterogeneous gas-solid absorption and regeneration and WGS reactions in the context of multiphase CFD for a regenerative magnesium oxide-based (MgO-based) process for simultaneous removal of CO_2 and enhancement of H_2 production in coal gasification processes.

Scope of Work

The Project consists of the following four (4) tasks:

- <u>Task1</u>. Development of a CFD/PBE model accounting for the particle (sorbent) porosity distribution and of a numerical technique to solve the CFD/PBE model.
- <u>Task2</u>. Determination of the key parameters of the absorption and regeneration and WGS reactions.
- <u>Task3</u>. CFD simulations of the regenerative carbon dioxide removal process.
- Task4. Development of preliminary base case design for scale up

CO₂ Removal and Hydrogen Production

Regenerable Sorbent Approach

Sorbent Preparation, Characteristics and Reactivity

Effect of Potassium Concentration on Sorbent Capacity

K/Mg Molar ratio

Optimum Sorbent Preparation Parameters

Preparation Parameters	HD52-P2
Sorbent particle diameter, μ m	150-180
Calcination temperature, °C	520
Calcination temperature ramp, °C/min	1
Duration of calcination, hr Concentration of potassium carbonate in the	8
impregnation solution, mol/lit (M)	1
Duration of impregnation, hr Drving temperature. °C	20
(post-impregnation)	90
Humidity during drying, %	ambient
Duration of drying, hr	24
Re-calcination temperature, °C (post-drying)	470
Calcination temperature ramp, °C/min	1
Duration of re-calcination, hr	4

Experimental Setup: Dispersed Bed Reactor

Reactivity of the Sorbents (Old & New)

Effect of Temperature on Sorption

Effect of Steam on Reactivity

*The sorbent is exposed to steam for 30 min prior to the run.

Possible Reasons for positive effect of steam

Structural changes

Secondary Carbonation Reaction

• MgO + H_2O = Mg(OH)₂

Hydration

• $Mg(OH)_2 + CO_2 = MgCO_3 + H_2O$

Carbonation

MgO-CO₂ & MgO-H₂O Equilibrium

Effect of Steam on Sorbent Reactivity and Capacity

 $Mg(OH)_2+CO_2 = MgCO_3 + H_2O$

ILLINOIS INSTITUTE

Two-Zone Variable Diffusivity Shrinking Core Model with Expanding product layer

A. Hassanzadeh, 2007

Low Reactive Zone (k₂)

$$D_g = D_{g0}(-\alpha X^{\beta})$$
 $r_p = r'_p \sqrt[3]{(1-X) + ZX}$

$$Z = \frac{\rho_{product} \cdot M_{react}}{\rho_{react} \cdot M_{product}} \qquad k_s = \begin{vmatrix} k_1 & \text{for } r \ge r_c \\ k_2 & \text{for } r < r_c \end{vmatrix}$$

$$\frac{dX}{dt} = -\frac{\frac{3}{r_p} \frac{k_s}{N_{MgO}^o} (C_b - C_e) (1 - X)^{\frac{2}{3}}}{1 + \frac{k_s}{D_g} r_p (1 - X)^{\frac{1}{3}} (1 - \sqrt[3]{\frac{1 - X}{1 - X + XZ}})}$$

Abbasi et al., Fuel, 2013

Coupled Computational Fluid Dynamics (CFD) Population Balance Model (PBM)

(CFD-PBM)

Numerical Modeling: Conservation Equations

Eulerian-Eulerian Approach in combination with the kinetic theory of granular flow

Assumptions: Uniform and constant particle size and density - Conservation of Mass

- gas phase:

$$\frac{\partial}{\partial t}(\varepsilon_g \rho_g) + \nabla (\varepsilon_g \rho_g v_g) = m_g$$

- solid phase

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s) + \nabla (\varepsilon_s \rho_s v_s) = \overset{\bullet}{m}_s$$

- Conservation of Momentum

 $\frac{\partial}{\partial t}(\varepsilon_{g}\rho_{g}v_{g}) + \nabla (\varepsilon_{g}\rho_{g}v_{g}v_{g}) = -\varepsilon_{g}\nabla P + \nabla \tau_{g} + \varepsilon_{g}\rho_{g}g - \beta_{gs}(v_{g} - v_{s})$ $\frac{\partial}{\partial t}(\varepsilon_{s}\rho_{s}v_{s}) + \nabla (\varepsilon_{s}\rho_{s}v_{s}v_{s}) = -\varepsilon_{s}\nabla P - \nabla P_{s} + \nabla \tau_{s} + \varepsilon_{s}\rho_{s}g + \beta_{gs}(v_{g} - v_{s})$ - gas phase: - solid phase

- Conservation of Momentum

- gas phase:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g y_i) + \nabla (\varepsilon_g \rho_g v_g y_i) = R_j$$

- solid phase

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s y_i) + \nabla (\varepsilon_s \rho_s v_s y_i) = R_j$$

- Conservation of solid phase fluctuating Energy

- solid phase $\frac{3}{2} \left[\frac{\partial}{\partial t} (\varepsilon_s \rho_s \theta) + \nabla (\varepsilon_s \rho_s \theta) v_s \right] = (-\nabla p_s I + \tau_s) : \nabla v_s + \nabla (\kappa_s \nabla \theta) - \gamma_s$ Generation of Diffusion dissipation energy due to solid

stress tensor

Abbasi and Arastoopour, CFB10, 2011

Numerical Modeling: Drag Correlation

Gas-solid inter-phase exchange coefficient: EMMS model (Wang et al. 2004)

multiplying the "Wen & Yu" drag correlation with a heterogeneity factor

Li et al., Chem. Eng. Sci, 2012

εg (-)

What is the Population Balance Equation?

To account for particle density distribution changes due to the reaction

$$\frac{\partial f(\boldsymbol{\xi}; \mathbf{x}, t)}{\partial t} + \frac{\partial}{\partial x_i} \left[u_p(t, \mathbf{x}) f(\boldsymbol{\xi}; \mathbf{x}, t) \right] + \frac{\partial}{\partial x_i} \left[D_{pt}(\boldsymbol{\xi}; \mathbf{x}, t) \frac{\partial f(\boldsymbol{\xi}; \mathbf{x}, t)}{\partial x_i} \right] + \frac{\partial}{\partial \xi_j} \left[\frac{\partial \xi_j}{\partial t} f(\boldsymbol{\xi}; \mathbf{x}, t) \right] = h(\boldsymbol{\xi}; \mathbf{x}, t)$$
Accumulation term + Convection term + Growth term = Source term

Solution Method: FCMOM

Finite size domain Complete set of trial functions Method Of Moments: FCMOM

Finite size domain: [-1, 1] instead of [0,∞]

$$\overline{\xi} = \frac{\{\xi - [\xi_{\min}(t) + \xi_{\max}(t)]/2\}}{[\xi_{\min}(t) + \xi_{\max}(t)]/2}$$

- Solution in terms of both Moments and size distribution
- > $f(\xi,x,t)$ will be approximated by expansion based on a complete set of trial functions

$$f(\xi, x, t) = \sum_{n=0}^{\infty} C_n(t, x) \Phi_n(\xi) \quad \text{when}$$

$$c_n = \sqrt{\frac{2n+1}{2}} \cdot \frac{1}{2^n} \cdot \sum_{\nu=0}^n (-1)^{n-\nu} \cdot \frac{(2\nu)!}{[(2\nu-n)!]} \cdot \left\{\frac{1}{[(n-\nu)!].[(\nu)!]}\right\} \cdot \mu_{2\nu-n}$$

$$\mu_i = \int_{-1}^1 \overline{f'} \cdot (\overline{\xi})^i \cdot d\overline{\xi} \quad \phi_n(\overline{\xi}) = \sqrt{\frac{2n+1}{2}} \cdot P_n(\overline{\xi})$$

$$\boxed{\frac{\partial \mu_i}{\partial t} + \nabla \cdot (\mu_i \cdot \nu_p) = -(MB + MB_{Con\nu} + IG)}$$
Strumendo and Arastoopour, 2008

Implementation and verification

 Implementation in Ansys /Fluent code via User Defined Scalars and Functions

Test case: Density Growth (Reaction) and convection

Assumption: Moments are convected with mixture velocity

$$\frac{\partial \mu_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} [v_{p,j}\mu_{i}] = -\{[\overline{f_{+1}'} - (-1)^{i} \cdot \overline{f_{-1}'}] - i \cdot \mu_{i-1}\} \cdot \frac{1}{(\xi_{\max} - \xi_{\min})} \cdot (\frac{d\xi_{\min}}{dt}) - \\\{[\overline{f_{+1}'} - (-1)^{i+1} \cdot \overline{f_{-1}'}] - (i+1) \cdot \mu_{i}\} \cdot \frac{1}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{d\xi_{\min}}{dt}) - \\\{[\overline{f_{+1}'} - (-1)^{i} \cdot \overline{f_{-1}'}] - i \cdot \mu_{i-1}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (\frac{\partial \xi_{\min}}{\partial x_{j}}) - \\\{[\overline{f_{+1}'} - (-1)^{i+1} \cdot \overline{f_{-1}'}] - (i+1) \cdot \mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) \\\frac{\partial \xi_{\min}}{\partial t} + v_{p} \cdot \nabla \xi_{\min} = K \\\rho_{s} = \frac{(\frac{\mu_{1}}{\mu_{0}})(\xi_{\max} - \xi_{\min}) + (\xi_{\min} + \xi_{\max})}{2}$$

Test case: Density Growth (Reaction) and convection

Preliminary Base case design and Simulation Results

Packed-Bed Experiments and Modeling

Packed-Bed Modeling results

Full loop base case design

(Courtesy of Larry Shadle, NETL)

Observed Fluidization behavior: Chugging

Sequence of events: (a) initially empty cone, (b) cone plugged with particles, (c) final empty cone.

"Chugging occurs when a large mass of particles lifts from the fluidized bed and moves into the cone leading into the riser. The cone-constriction prevents particles from flowing smoothly into the riser and particles plug the riser pipe."

Clark et al., Powder Tech. 2013

NETL experimental images every 0.4-0.6 sec

Future Work

Modeling, simulation and base design

- Development of a modified frictional granular flow model and Completion of cold flow full loop CFB simulations for solid circulation rate calculations.
- completion of riser simulation by including reaction and population balance model for density changes.
- Development of preliminary base case design for scale up

Experiments

- Effect of CO₂ and H₂O concentration on absorption reaction and operating condition on regeneration reaction
- Modeling of regeneration process and combined absorption & WGS reactions

Project Schedule

Milestones:

- ▲ Task completion
- Experimental work completed
- + Reaction model finalized
- ★ CFD simulation of single reaction/reactor Completed
- CFD simulation of integrated process Completed
- Development of the base-case design completed