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Program Objective

The overall objective of the program is to develop a
Computational Fluid Dynamic (CFD) model and to
perform CFD simulations to describe the
heterogeneous gas-solid absorption and
regeneration and WGS reactions in the context of
multiphase CFD for a regenerative magnesium
oxide-based (MgO-based) process for simultaneous
removal of CO, and enhancement of H, production
in coal gasification processes.
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Scope of Work

The Project consists of the following four (4) tasks:

Task1. Development of a CFD/PBE model accounting for the particle
(sorbent) porosity distribution and of a numerical technique to
solve the CFD/PBE model.

Task2. Determination of the key parameters of the absorption and
regeneration and WGS reactions.

Task3. CFD simulations of the regenerative carbon dioxide removal
process.

Task4. Development of preliminary base case design for scale up
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CO, Removal and Hydrogen Production
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Regenerable Sorbent Approach
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Sorbent Preparation, Characteristics and
Reactivity



CO, Capacity, g of co2/100 g of sorbent
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Effect of Potassium Concentration on
Sorbent Capacity
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Optimum Sorbent Preparation Parameters

Preparation Parameters M

Sorbent particle diameter, um 150-180
Calcination temperature, °C 520
Calcination temperature ramp, °C/min 1
Duration of calcination, hr 8
Concentration of potassium carbonate in the

impregnation solution, mol/lit (M) 1
Duration of impregnation, hr 20
Drying temperature, °C

(post-impregnation) 90
Humidity during drying, % ambient
Duration of drying, hr 24
Re-calcination temperature, °C (post-drying) 470
Calcination temperature ramp, °C/min 1

Duration of re-calcination, hr 4
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Experimental Setup: Dispersed Bed Reactor

Data Acquisition &
Control System
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Reactivity of the Sorbents (Old & New)
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CO, Capacity. Gco2/100g of sorbent
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Effect of Temperature on Sorption
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MgO Conversion, %
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Effect of Steam on Reactivity
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Possible Reasons for positive effect of steam

Structural changes

Secondary Carbonation Reaction

MgO + H,0 = Mg(OH), Hydration

Mg(OH), + CO, = MgCO, + H,0 Carbonation
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MgO-CO, & MgO-H,O Equilibrium
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Effect of Steam on Sorbent Reactivity and

Capacity
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Two-Zone Variable Diffusivity Shrinking Core Model with
Expanding product layer
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Coupled
Computational Fluid Dynamics (CFD)
Population Balance Model (PBM )

(CFD-PBM)
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Numerical Modeling: Conservation Equations

Eulerian- Eulerian Approach in combination with the kinetic theory of
granular flow

Assumptions: Uniform and constant particle size and density
- Conservation of Mass

a .
- gas phase: E(ggpg)Jrv,(ggpgvg) =m,

- solid phase %(gsps) + V'(gspsvs) = };/ls

- Conservation of Momentum
_gasphase: @
gas phase E(a‘gpgvg)+v.(ggpgvgvg) =—-¢,VP+Vr, +é,p,8 - B, (v, —V,)

- solid phase 0
! p a(gslosvs) + V‘(gspsvsvs) = —SSVP - VPv + V‘TS + gspsg + IBgs (vg - vs)

- Conservation of Momentum

- gas phase: 0
g p 5(8gpgyl)+v‘(8gpgvgyl):R/

-SO|Id phase %(8\p\y1)+v(gApAvsy1):R]

- Conservation of solid phase fluctuating Energy

3.0
-SO||d phase E[E(gspse) + V'(gspse)vs] = (_vpsl + Ts) : Vvs + V(ste) - 7/5

Generation of Diffusion  dissipation
energy due to solid
stress tensor Abbasi and Arastoopour , CFB10, 2011
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Numerical Modeling: Drag Correlation

(Wang et al. 2004)

Gas-solid inter-phase exchange coefficient: EMMS model
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What is the Population Balance Equation?
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_phaseboundary H i o, o
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Solution Method: FCMOM

Finite size domain Complete set of trial functions Method Of Moments: FCMOM

» Finite size domain: [-1, 1] instead of [0,] & =12 —Lomn (D F & (D1 2]
[Cuin () + G (1)]/2

> Solution in terms of both Moments and size distribution

> f(&x,t) will be approximated by expansion based on a complete set of trial
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ou.
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Implementation in Ansys [Fluent code via User Defined
Scalars and Function

CFD
Multiphase Model
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v T
3 PBE terms Moments of size
Reaction Distribution
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\ 4
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Test case: Density Growth (Reaction) and convection

Assumption: Moments are convected with mixture velocity

A
0 0 | d /S
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or + axj [Vp,j:ui] {[f+1 (=1 -f_1] l-,ui_l}.(é:max _fmin)'( )
TN T (s 1 dé . -
W =D ] (z+1).yi}.(§max_§mm)( o) f[.
/ i 1 ] Vp,]- @5 , Im
- (=D o=t ‘ (—=) -
U =D =i G i) ( o )
N e Vo, 8§
R R
air:m + V mem _ v
Hill
( )(gmax B éjmm ) + (é:mm gmax ) Vo™ Vs_zolzm/s
P, = g, =0.

2




ILLINOIS INSTITUTE
OF TECHNOLOGY

Test case: Density Growth (Reaction) and convection
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Preliminary Base case design and Simulation
Results
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Packed-Bed Experiments and Modeling
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Packed-Bed Modeling results

CO, Absorption Breakthrough Curve
at Different Operating Temperatures

MgO mass fraction
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Full loop base case design

Nominal
Design
Location gas Flow
(g/s)

Adsorber

Loop seal 1 0.7

Loop seal 2 0.8

Regenerator 1
Move air 0.14

ed Aug 10 2011 15:20:50.866 b4, 48]

Based on DOE/ NETL Carbon Capture Unit.
(Courtesy of Larry Shadle, NETL)
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Observed Fluidization behavior:

Chugging

Sequence of events: (a) initially empty cone, (b) cone plugged with particles, (c) final empty cone.

"Chugging occurs when a large mass of
particles lifts from the fluidized bed and
moves into the cone leading into the riser. The
cone-constriction prevents particles from
flowing smoothly into the riser and particles
plug the riser pipe.”

Clark et al., Powder Tech. 2013

NETL experimental images
every 0.4-0.6 sec
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Future Work

Modeling, simulation and base design

Development of a modified frictional granular flow model and
Completion of cold flow full loop CFB simulations for solid circulation
rate calculations.

completion of riser simulation by including reaction and population
balance model for density changes.

Development of preliminary base case design for scale up

Experiments

Effect of CO2 and H20 concentration on absorption reaction and
operating condition on regeneration reaction

Modeling of regeneration process and combined absorption & WGS
reactions
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Project Schedule

Task 1.
— A
Task2. | ,j»
A
Task 3. Y »
TTTA
Task 4. o .
B A

Month 3 6 912 1518 21 24 27 30 33 36 39 42 45 48

Milestones:
A Task completion
€ Experimental work completed
—+ Reaction model finalized
Y CFD simulation of single reaction/reactor Completed
# CFD simulation of integrated process Completed
I Development of the base-case design completed

32



