2013 UCR, HBCU/OMI Contractors Review Meeting June 11-13, 2013, Pittsburgh, PA

Mechanically Activated SHS Compaction of MoSi₂-Based Composites

Evgeny Shafirovich and Mohammad S. Alam

Center for Space Exploration Technology Research
Department of Mechanical Engineering
The University of Texas at El Paso

Acknowledgments

- ☐ DOE NETL for financial support (Grant DE-FE-0008470)
- ☐ Dr. Michael Carducci of Climax Molybdenum, Inc., for supplying Mo powder free of charge
- ☐ Armando Delgado for assistance with the design of the SHS compaction apparatus
- ☐ Ashvin Kumar Narayana Swamy for assistance with particle size analysis and thermogravimetric analysis
- ☐ Mark Flores for assistance with compression tests

Applications of MoSi₂

- ☐ High-temperature heating elements (up to 1800°C)
- Microelectronics
- ☐ Structural materials for advanced boilers and turbines (>1100°C)
 - The melting point: 2030°C
 - Excellent high-temperature oxidation resistance

Heating elements made of MoSi₂

MoSi₂ Problems and Solutions

- ☐ MoSi₂ has problems such as:
 - low fracture toughness at room temperature
 - low strength at elevated temperatures
- ☐ These problems hinder the widespread use of MoSi₂ in structural applications.
- ☐ The properties may be improved by alloying with secondary phases:
 - High-melting point silicides: Mo₅Si₃, Ti₅Si₃, WSi₂, NbSi₂, CoSi₂
 - Ceramics: SiC, Si₃N₄, Al₂O₃, ZrO₂, TiC

SHS as a Method for Fabrication of MoSi₂-based Composites

Self-propagating high-temperature synthesis (SHS) also called combustion synthesis

Advantages of SHS:

- Low energy consumption
- Simple equipment
- Short processing time
- Tailored microstructure and properties
- High purity of the products

SHS: Problem No. 1

- \square Deviation toward silicides with a higher content of Mo (Mo₃Si and Mo₅Si₃) or adding components such as W and C decreases the adiabatic flame temperature ignition becomes impossible.
- ☐ Solution: Mechanically activated SHS (MASHS)
 - Adds a short-duration high-energy ball milling step before combustion
 - The high-energy milling rapidly produces nanostructured powders intermixing of reactive components on a nanometric scale.
 - The fracture-welding process increases the contact surface area and destroys the oxide layer.
 - Mechanical activation improves the reaction kinetics, leading to an easier ignition and stable combustion.

SHS: Problem No. 2

- ☐ The products have high porosity and low density.
- ☐ Solution: SHS compaction (compression immediately after combustion).
 - Quasi-isostatic pressure is applied through a pressure-transmitting medium (e.g., alumina or silica)
 - Press while products still hot
 - Decreases porosity and increases density of products

Image: M. Martinez Pacheco et al., *Appl. Phys. A* 90 (2008) 159.

Prior Research

- ☐ MASHS of MoSi₂/SiC composites
 - Milling at 200-400 rpm for 1-105 hours
- ☐ MASHS of MoSi₂/WSi₂ composites
 - Milling at 300 rpm for 30 hours
- ☐ SHS compaction has never been used for densification of MoSi₂-based composites
 - J. Xu et al., *J. Alloys and Compounds* 487 (2009) 326
 - J. Xu et al., Int. J. Refractory Metals & Hard Materials 28 (2010) 217

Goal and Objectives

□ Project goal: To develop a novel and competitive processing route for manufacturing MoSi₂-based composites: MASHS-compaction.

☐ Project objectives:

- determination of optimal MASHS conditions for production of MoSi₂ reinforced with secondary phases
- development of an SHS compaction technique for densification and shaping of MoSi₂-based composites obtained by MASHS
- determination of mechanical and oxidation properties of MoSi₂-based composites produced by MASHS-compaction

Preparation of Mixtures

Particle Size Measurements

☐ Molybdenum

- Volume mean diameter: 16.6 µm
- Median diameter: 11.3 μm

□ Silicon

- Volume mean diameter: 10.2 μm
- Median diameter: 7.7 μm

Multi-laser particle size analyzer (Microtrac Bluewave)

Mixing

Mixture ratio corresponds to the product composition:

- 80 vol% MoSi₂ 20 vol% Mo₅Si₃
- 70 vol% MoSi₂ 30 vol% Mo₅Si₃

Three-dimensional inversion kinematics tumbler mixer (Inversina 2L)

High Energy Ball Milling

Planetary ball mill (Fritsch Pulverisette 7 Premium Line)

High Energy Ball Milling

Planetary ball mill (Fritsch Pulverisette 7 Premium Line)

- Zirconia-coated bowls and zirconia grinding balls
- Argon atmosphere
- Mixture-ball mass ratio: 1:6
- Rotational speed: 1100 rpm
- 4 milling-cooling cycles (10-min milling and 75-min cooling)

Preparation of Pellets

- Compaction in an uniaxial hydraulic press
- Pellet diameter: 12.7 mm,25.4 mm
- Pressing force: 30-40 kN

Mechanically Activated SHS of $MoSi_2$ - Mo_5Si_3 Composites

Reaction Chamber

Effect of Mechanical Activation on Combustion

Without Mechanical Activation

Mechanical activation significantly increases the front velocity.

Thermocouple Measurements

Maximum Temperature:

20 vol% Mo₅Si₃: 1244 °C

30 vol% Mo₅Si₃: 1201 °C

X-ray Diffraction Analysis

As-milled powder

- Mo
- Si
- No MoSi₂ or Mo₅Si₃

Combustion products

- MoSi₂
- Mo₅Si₃
- No unreacted Mo or Si

Scanning Electron Microscopy

Before milling

After milling

After combustion

- Milling reduces particle size to submicron range.
- In the combustion products, most particles have a size of 0.5–1 μ m. The particles are agglomerated and form a 3-D network structure.

SHS Compaction of $MoSi_2$ - Mo_5Si_3 Composites

SHS Compaction Apparatus

SHS Compaction Apparatus under Hydraulic Press

SHS Compaction Product

After combustion in Ar

Relative density: 39%

After SHS compaction

Relative density: 60%

Use of SHS compaction increased the relative density by 52%.

Compression Test

Compressive load-strain curve of the SHS compaction product

Max load: 37.9 kN, area: 4.77 cm²,

Compressive strength: 79 MPa

Fatigue test machine (Instron 8801)

Oxidation of the Obtained Materials

Thermogravimetric analysis

Sample composition: 80 vol.% MoSi₂
 and 20 vol.% Mo₅Si₃

Mass: 22 mg

Atmosphere: 12 % O₂, 88 % Ar

Gas flow rate: 50 mL/min

Heating rate: 10 °C/min

■ Maximum temperature: 1000 °C

Thermogravimetric analyzer (Netzsch TGA 209 F1 Iris)

Oxidation Properties

Products obtained by combustion in Ar:

- Mass gain: 40.9 %
- Oxidation starts at 427°C
- Mass loss starts at >700°C, explained by formation and vaporization of MoO₃

Products obtained by SHS compaction:

- Mass gain: 8.38 %
- Oxidation starts at 423°C
- Mass loss starts at >700°C

Conclusions

MoSi ₂ -Mo ₅ Si ₃ composites have been obtained by combustion synthesis that involved mechanical activation of the reactants and SHS compaction.
Mechanical activation significantly accelerates combustion.
SHS compaction increased the product density by over 50% as compared to the combustion in argon.
The compressive strength of the compacted products is about 80 MPa.
SHS compaction improved the oxidation resistance of the products.

Future Work

- □ Systematic experiments on MASHS-compaction of MoSi₂-Mo₅Si₃ composites will be conducted for elucidating the effects of different process parameters on the combustion characteristics, product composition, mechanical properties, and oxidation resistance.
- ☐ MASHS-compaction of MoSi₂ reinforced with other secondary phases (e.g., WSi₂ and SiC) will be studied.

Thank you!

