

Laves Phase-Strengthened Austenitic Steels for Coal-Fired Power Systems

Ian Baker, Bin Hu, Geneva Trotter

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755

DOE grant **DE-FE0008857**

Wednesday, June 12th, 2013

Outline

- Motivation
- Introduction to alumina-forming austenitic stainless steels
- Fe-20Cr-30Ni-2Nb-5Al
- Characterization of as-hot-rolled DAFA 26
- Characterization of processed DAFA 29

Motivation

Power generation plants need to operate at higher temp

Current boiler temperatures: T_H ~600° C

Desired temperatures: T_H up to 760° C

Efficiency gains of at least 8-10% possible

(National Energy Technology Laboratory, Advanced Materials for Ultra Supercritical Boiler Systems 2012

Motivation

Desired operational environment in power generation plants is demanding:

- Decades-long service life
- •High temperature (700° C+), high pressure (35MPa+)
 - •Requires excellent high-temperature creep strength
- •High H₂O vapor, S, C concentrations
 - •Requires excellent corrosion resistance

Current boiler elements are made from:

- Ferritic stainless steels (\$)
- Austenitic stainless steels (\$\$)
- Ni-base superalloys (\$\$\$)

Courtesy of Y. Yamamoto, G. Muralidharan, M.P. Brady, Oak Ridge National Laboratory

Characterization of as-processed material

DAFA 26 Preparation

- Arc-melted 600g ingot by using pure element feedstock.
- Drop cast into 1" x 1" x 3" bar shape die.
- Soaked at 1100°C for 2 h in Ar + 4% H_2 gas
- Hot-rolled the ingot along longitudinal axis for up to 80% thickness reduction (~15-20% thickness reduction per pass).
- Anneal the plate at 1100°C for 30 min in Ar + 4% H₂ gas, followed by air cooling.

Summary

- 1. Solutionizing and annealing Fe-20Cr-30Ni-2Nb-5Al produces Laves Phase and NiAl ppts in the matrix and GBs.
- 2. Hot-processed DAFA 26 contains large (1-5 μm) Laves phase ppts
- Annealing of DAFA 26 produces L1₂ ppts in the matrix and Laves Phase and NiAl at the grain boundaries.
- 4. Cold-rolling of DAFA 29 fractures Laves Phase ppts.
- Annealing, cold-rolled DAFA 29 produces a very fine (100 nm) grain structure and L1₂ precipitates in the matrix.
- Solutionizing DAFA 29 followed by cold-rolling and annealing produces a fine grain size (100 nm); Laves Phase and NiAl ppts in the matrix and GBs.

Future work

- Complete microstructural characterization of DAFA 29 after processing
 - determine orientation relationships between both
 Laves phase ppts and NiAl ppts and matrix
 - Do NiAl ppts nucleate on Laves phase ppts?
- Tensile tests on as-received and processed DAFA 29
- Creep tests on DAFA 29 in different conditions
- Characterization of precipitates after creep testing

