Instabilities in Particle Flows: Assessing Hydrodynamics and Understanding Dominant Mechanisms

Peter P. Mitrano Christine M. Hrenya John R. Zenk

Xiaolong Yin

Sofiane Benyahia Janine E. Galvin

June 13th, 2013 Pittsburgh UCR Conference

Motivation: Instabilities in Particulate Flows

CFD simulation from Agrawal, Loezos, Syamlal, Sundareson, J. Fluid Mech. (2001)

Particle Clustering Instability: Known Mechanisms

Homogeneous Cooling System

Granular Work Inelasticity • Hopkins & Louge 1991 • Goldhirsch et al. 1993 (Dissipative Collisions) • Mitrano et al.

Goldhirsch, et al., J. Sci. Comput. (1993)

Fluidized Flow

Objectives

- Relative importance of mechanisms in gas-solid flow instabilities
 - DNS, MD simulations, hydrodynamics
- Hydrodynamic description for developed gradients and correlated particle velocities

– MD simulations, hydrodynamics

- Hydrodynamic description of binary mixture of particles
 - MD simulations, linear hydrodynamics

Objectives

- Relative importance of mechanisms in gas-solid flow instabilities
 - DNS, MD simulations, hydrodynamics
- Hydrodynamic description for developed gradients and correlated particle velocities

– MD simulations, hydrodynamics

- Hydrodynamic description of binary mixture of particles
 - MD simulations, linear hydrodynamics

Input: Typical CFB Conditions

- Restitution coefficient:
- Solids fraction:
- Density ratio:
- System length scale
- Reynolds Number:

$$\operatorname{Re}_{T} \propto \rho_{fluid} \sqrt{T_{0}}$$

 ∞ Particle inertial forces Fluid viscous forces

 $0.8 \le e \le 1.0$ $0.1 \le \phi \le 0.4$ $800 \le \frac{\rho_{solid}}{\rho_{fluid}} \le 1500$ $L/d = 30 \ge 30 \ge 4$

$$3 \leq \text{Re}_T \leq 30$$

System

Homogeneous Cooling System (HCS)

- No external forces
- Periodic boundaries
- 3-D domain
- Random initial configuration
- No net momentum

Particle properties

- Coefficient of normal restitution (e)
- Monodisperse, frictionless spheres

Kinetic energy decays over time

Previous HCS work

Granular flow: *inelastic* solids; no gas (Goldhirsch 1993)

Previous HCS work

Granular flow: *inelastic* solids; no gas (Goldhirsch 1993)

Gas-solid flow (Wylie & Koch 2000)

elastic particles in viscous fluid flow
 Focus: viscous effects

Kinetic Theory

$$\frac{dT}{dt} = -\zeta T - \frac{2T}{m}\gamma$$

 ζ cooling rate due to collisions γ cooling rate due to viscous forces T granular temperature

Energy balance for stable, homogeneous cooling

- 1. Verification of instability-detection method
- 2. Preliminary validation for new theory*

 $(\overline{\mathbf{U}}_{\mathbf{s}} - \overline{\mathbf{U}}_{\mathbf{f}}) \rightarrow (\mathbf{U}_{\mathbf{s}} - \mathbf{U}_{\mathbf{f}})$

New theory: rigorous incorporation of *instantaneous* viscous force in starting kinetic (Enskog) equation

*Garzó, Tenneti, Subramaniam, Hrenya, J. Fluid Mech. (2012)

Simulation vs. Kinetic Theory

Theory agrees with simulation before onset of instability (as expected)

Influence of Dissipative Mechanisms

Increased dissipation promotes instability, regardless of mechanism

Relative Importance of Dissipative Mechanisms

Collisional dissipation dominates for high Re_T

More dissipative systems may actually possess higher energy levels due to velocity vortices

Energy Crossover: Physical Mechanism

- Dissipation promotes velocity vortex instability
- Collisions reduce normal relative velocity to greater extent than tangential relative velocity

Both collisional and viscous losses align particle motion
Dissipation decreases with normal relative velocity

- 1. Velocity vortices
- 2. Glancing collisions
- 3. Smaller relative normal velocity
- 4. Reduced dissipation

Outline

- Relative importance of mechanisms in gas-solid flow instabilities
 - DNS, MD simulations, hydrodynamics
- Hydrodynamic description in spite of developed gradients and correlated particle velocities
 - MD simulations, hydrodynamics
- Hydrodynamic description of binary mixture of particles
 - MD simulations, linear hydrodynamics

Critical Length Scales for Instability

Velocity

Goldhirsch, Tan, Zanetti, J. Sci. Comput. (1993)

Hydrodynamics vs. MD

Hydrodynamics: Onset of Instability

Voidage $(1-\varphi)$ in slice of 3D domain

Hydrodynamics: Onset of Instability

 $1 - \varphi = 0.8997$

$$L/d = 20$$
, t=100s

Hydrodynamics: Onset of Instability

Small-Kn and molecular chaos assumptions not so restrictive to hydrodynamics

Outline

- Relative importance of mechanisms in gas-solid flow instabilities
 - DNS, MD simulations, hydrodynamics
- Hydrodynamic description in spite of developed gradients and correlated particle velocities
 - MD simulations, hydrodynamics
- Hydrodynamic description of binary mixture of particles
 - MD simulations, *linear* hydrodynamics

Binary Systems: Extra Input

• Diameter ratio

 $-d_{1}/d_{2}$

- Mass ratio $-/=m_1/m_2$
- Number fraction

$$-x_1 = n_1 / N$$

 $-n_1$ = number of

type 1 particles

-N = total number of particles

Binary Systems: Extra Input

• Diameter ratio

 $-d_{1}/d_{2}$

- Mass ratio $-/=m_1/m_2$
- Number fraction

$$-x_{1} = n_{1}/N$$

 $-n_1$ = number of

type 1 particles

-N = total number of particles

Diameter Ratio

 $x_1 = n_1/N = 0.5, \ \mu = m1/m2 = 2, \ \phi = 0.2$

Mass Ratio

$$d_1/d_2 = 1$$
, $x_1 = n_1/N = 0.1$, $\phi = 0.2$

Number Fraction

Number Fraction: Zoomed In

• Both dissipative collisions and viscous losses are important for conditions studied

- Both dissipative collisions and viscous losses are important for conditions studied
- More dissipative systems may actually possess highly levels energy due to vortices

- Both dissipative collisions and viscous losses are important for conditions studied
- More dissipative systems may actually possess highly levels energy due to vortices
- Molecular chaos and small Knudsen number assumptions not so restrictive

- Both dissipative collisions and viscous losses are important for conditions studied
- More dissipative systems may actually possess highly levels energy due to vortices
- Molecular chaos and small Knudsen number assumptions not so restrictive
- Binary mixture hydrodynamics do well until moderate dissipation is combined with disparate species parameters

Outline

- Relative importance of mechanisms in gas-solid flow instabilities
- Hydrodynamic description in spite of developed gradients and correlated particle velocities
- Hydrodynamic description of binary mixture of particles

Instabilities in Particle Flows: Assessing Hydrodynamics and Understanding Dominant Mechanisms

Peter P. Mitrano Christine M. Hrenya John R. Zenk

Xiaolong Yin

Sofiane Benyahia Janine E. Galvin

June 13th, 2013 Pittsburgh UCR Conference

Lattice Boltzmann Information

- Susp3D A 3D particulate flow solver^{1, 2}
 - Fluid flow is solved by a D3Q19 lattice Boltzmann model
 - Fluid-particle interaction is fully resolved
 - Particle motion is based on Newton's equation
- Particle-particle short-range interaction models
 - Lubrication interaction is implemented analytically³
 - Particle-particle collisions are treated as normal dissipative collisions between hard spheres (i.e. normal restitution, no friction)
- Simulation parameters
 - Domain size: 300(dx) × 300 (dx) x 40 (dx) where dx is the lattice spacing
 - Particle size: ~10(dx)
 - Fluid kinematic viscosity: $1/6 (dx^2/dt)$ at low Re and $1/100 (dx^2/dt)$ at high Re
- System parameters
 - Re: 1-30
 - Solid fraction: 0.1-0.4
 - Normal restitution coefficient: 0.8, 0.9, 1.0
 - Particle-fluid density ratio: 800, 1000, 1500

¹Ladd 1994a, 1994b, J. Fluid Mech. ²Ladd and Verberg 2001, J. Stat. Phys. ³Nguyen and Ladd 2002, Phys. Rev. E

Velocity Vortices

Time

Particle Clusters

Time

Density Ratio

Previous HCS work

Granular flow: *inelastic* solids; no gas (Goldhirsch 1993)

