High-Temperature Nano-Derived Micro-H₂ and -H₂S Sensors

Engin Ciftyurek (Ph.D. Candidate) Christina Wildfire (Graduated Student, Ph.D.) Edward M. Sabolsky (PI)

Energy Materials Program Department of Mechanical and Aerospace Engineering West Virginia University

Annual DOE-NETL University Coal Research Project Review June 11-13, 2013

- Develop micro-scale, chemical sensors composed of nano-derived, metal-oxide materials which display stable performance within high-temperature environments (>500°C).
- <u>Short term</u>— Develop high-temperature H₂ and H₂S sensor using low cost, easily reproducible methods with 3D porous nanomaterials.
- Long term Develop high-temperature micro-sensor arrays to detect gases such as NO_x, SO_x, H₂S, H₂, HCs.
- Collaboration with NexTech Materials, Ltd. (Lewis Center, OH).

Proposed Work Plan

Task 2.0 Synthesis and Characterization of Nano-Composite Electrodes.

Doped-tin oxide, ceria, zirconate (perovskite and pyrochlore), and molybdate/tungstate nanomaterials will be synthesized using hydrothermal and/or glycine-nitrate processes and characterized.

Task 3.0 Lost-Mold Microcasting of the Selective Electrode Structure.

Develop microcasting methods for patterning microscale, chemically selective pads on alumina wafers.

<u>**Task 4.0 Fabrication of Micro-Sensors and Arrays.</u>** Fabricate functional hydrogen micro-sensors and micro-sensor arrays. In addition, stable IDEs for high-temperature applications must be developed.</u>

Task 5.0 Micro-Sensor and Sensor Array Testing.

Micro-sensors will be first characterized for baseline resistance using external furnace heat at temperatures ranging from 600°C to 1000°C. Key tests include:

- Sensitivity and selectivity
- Humidity sensitivity (0-10% H₂O)
- O₂ requirements (0.1-20%)
- •CO cross-sensitivity (ppm-% CO)
- Temperature sensitivity (500-1000°C)

Proposed Work Schedule

Schedule of tasks and milestones												
Task/Milestone	Quarter after Project Initiation											
	1	2	3	4	5	6	7	8	9	10	11	12
Task 1. Project Management and Planning (Q1-Q12)												
Subtask 1.1: Kick-Off Meeting and Sensor Design at WVU.												
\rightarrow MS: Sensor and Array Established												
Subtask 1.2: Project Meetings and Reporting			1						1			
\rightarrow DL: Quarterly Reports	•	•	•	•	•	•	•	•	•	•	•	•
\rightarrow DL: Annual Progress Reports				٠				•				
\rightarrow DL: Final Technical Report												•
Task 2. Synthesis and Characterization of Nano-Composite Electrodes. (Q1-Q7)												
Subtask 2.1: Synthesis of Zirconate Electrode Compositions												
\rightarrow MS: Process for synthesizing ABO ₃ and A ₂ B ₂ O ₇ nano- powder established		,										
Subtask 2.2: Composite Selective Electrodes												
\rightarrow DL: NexTech nano-catalyst delivered to WVU for stability testing			•	,								
Subtask 2.3: Electrode Characterization												
\rightarrow MS: Stability of H_2 and H_2S nano-composites electrodes defined to 1200 °C												
Task 3. Lost-Mold Microcasting of the Selective Electrode Structure. (Q5-Q11)						<u> </u>						

Tools/Milestone	Quarter after Project Initiation											
Task/Milestone		2	3	4	5	6	7	8	9	10	11	12
Task 3. Lost-Mold Microcasting of the Selective Electr	Task 3. Lost-Mold Microcasting of the Selective Electrode Structure. (Q5-Q11)											
Subtask 3.1: Micro-Mold Fabrication												
\rightarrow MS: Microcasting process defined												
\rightarrow DL: Micro-molds delivered to NexTech for commercial microcasting demonstration					•	•	•	•				
Subtask 3.2: Lost-Mold Microcasting and Sintering of Micro-Selective Electrode					``		L					
Subtask 3.3: Selective Electrode (SE) Characterization.												
Task 4. Fabrication of Micro-Sensors and Arrays (Q6-Q12)												
Subtask 4.1: Pt Interconnect and Counter-Electrode (CE) Deposition												
Subtask 4.2: Selective Electrode (SE) Deposition/Sintering						+						
\rightarrow MS: Micro-sensor fabricated												
Subtask 4.3: H ₂ -H ₂ S Micro-Sensor Array Fabrication												
\rightarrow MS: Micro-sensor array fabricated												
Task 5. Micro-Sensor and Sensor Array Testing (Q8-Q12)												
Subtask 5.1: Testing of H ₂ micro-sensors												
\rightarrow MS: Micro-sensor specification targets achieved												
\rightarrow DL: Delivery of sensors to NexTech for testing							•	•	•	•	•	
Subtask 5.2: Testing of H ₂ S micro-sensors and H ₂ -H ₂ S array												
\rightarrow MS: Micro-sensor array specification targets achieved												

Proposed Milestones

- •Sensor and Sensor Array design established Q2
- Process for synthesizing nanomaterials established Q4
- •Stability of H₂ and H₂S nano-composites electrodes defined– Q8
- Micro-casting process defined Q6
- Micro-sensors fabricated Q8
- Micro-sensor array fabricated Q9
- Micro-sensor specification targets achieved Q11
- Micro-sensor array specification targets achieved Q12

Closure of testing labs in January at WVU due to aged ventilation. Remodeling expected to be completed in August.

Proposed Deliverables

- 1) Quarterly and annual progress reports to DOE
- 2) Subtask 2.2- industrial partner delivers nanomaterials to WVU for stability testing (Q3)
- 3) Subtask 3.1- Micro-molds delivered to industrial partner for commercial microcasting demonstration (Q5-8)
- 4) Subtask 5.1- Delivery of micro-sensors to industrial partner for testing (*delivery start of each quarter Q7-Q11*)
- 5) Subtask 5.2- Delivery of arrays to industrial partner after testing- *delayed due to testing.*

Presentations of this Work

- "High temperature nano-derived hydrogen sensors," Christina Wildfire, Engin Ciftyurek, Katarzyna Sabolsky, Edward M. Sabolsky, European Ceramics Society (ECerS) XII conference in Stockholm, Sweden, June 19-23 2011, Nanomaterials Symposium; INVITED PRESENTATION
- "Performance and Stability of High-Temperature Nano-Derived Hydrogen Sensors," Edward M. Sabolsky, Christina Wildfire, Engin Ciftyurek, Katarzyna Sabolsky, 220th Electrochemical Society Meeting, Boston, MA, Oct. 9-14, 2012; PRESENTATION
- "High-Temperature Nanomaterials for Electrochemical Micro-Sensors," Edward M. Sabolsky, Christina Wildfire, Engin Ciftyurek, Energy Materials and Applications (EMA) 2012 Conference in Orlando, FL, January 18-20, 2012, S1: New Frontiers in Electronic Ceramic Structures, Advanced Electronic Material Devices and Circuit Integration; PRESENTATION
- 4. "Nano-Derived, Micro-Chemical Sensors for High-Temperature Applications," Edward M. Sabolsky, Christina Wildfire, Engin Ciftyurek, Katarzyna Sabolsky, 221st Electrochemical Society Meeting in Seattle, WA, May 6-10, 2012; **INVITED PRESENTATION**
- "High-Temperature Nano-Derived Chemical Micro-Sensors," Edward M. Sabolsky, Christina Wildfire, Engin Ciftyurek, Katarzyna Sabolsky, 10th International Symposium on Ceramic Materials and Components for Energy and Environmental Applications (CMCEE) 2012 in Dresden, Germany, May 20-23, 2012; PRESENTATION

Presentations of this Work

- 6) "Nano-Derived, Micro-Chemical Sensors for High-Temperature Applications," E. M. Sabolsky, C. Wildfire, E. Ciftyurek, K. Sabolsky, 221st Electrochemical Society Meeting in Seattle, WA, May 6-10, 2012; **INVITED PRESENTATION**.
- 7) "High-Temperature Compatible Electrodes with Various Microstructural Architectures," E. Çiftyürek, K. Sabolsky, and E.M. Sabolsky, 221st Electrochemical Society Meeting in Seattle, WA, May 6-10, 2012; **PRESENTATION**.
- "Degradation of Platinum Thin Films Electrodes for High-Temperature MEMS Applications", E. Çiftyürek, K. Sabolsky and E. M. Sabolsky, WV Academia Science 2012 Charleston, West Virginia, USA. PRESENTATION.
- "High-Temperature Nano-Derived Sensors for Online Monitoring of SO₂ Emissions", E. Çiftyürek, C. Wildfire, and E. M. Sabolsky, Materials Science & Technology 2012, Pittsburgh, Pennsylvania, USA. PRESENTATION.
- "High-Temperature Nano-derived Sensor Development for Detection of H₂S and SO₂ Emissions." E. Çiftyürek, K. Sabolsky, and E. M. Sabolsky, Materials Science & Technology 2013, Quebec, Canada. TO BE PRESENTED.

Publications of this Work

- E. Çiftyürek, K. Sabolsky, and E. M. Sabolsky, "Platinum Thin Film Electrodes for High-Temperature Chemical Sensor Applications.", <u>Published</u> in Sensors and Actuators B: Chemical, ISSN 0925-4005, 10.1016/j.snb.2013.02.058.
- E.M. Sabolsky, C. Wildfire, E. Çiftyürek, and K. Sabolsky, "Nano-Derived, Micro-Chemical Sensors for High-Temperature Applications", <u>Published</u> in ECS Transactions, 45 (3) 495-506 (2012).
- 3) C. Y. Wildfire, E. Çiftyürek, K. Sabolsky, and E. M. Sabolsky, "Investigation of Doped-Gadolinium Zirconate Nanomaterials for High-Temperature Hydrogen Sensor Application", <u>Accepted</u> to Sensors and Actuators B: Chemical, March 2013.
- 4) C. Y.Wildfire, E. Çiftyürek, K. Sabolsky, and E. M. Sabolsky, "Development and Testing of High Temperature Hydrogen Micro-Sensors.", <u>Submitted</u> to Sensor Letters, in June 2013.
- 5) E. Çiftyürek, K. Sabolsky, and E. M. Sabolsky "Functionally Gradient Zr-Pt Composite Thin Films for Stable High-Temperature Electrodes", <u>To be submitted</u> to Journal of Microelectromechanical systems, in June 2013.
- 6) C. Wildfire, E. Çiftyürek, K. Sabolsky, and E. M. Sabolsky, "High Temperature Semiconducting Hydrogen Sensors Based on Lanthanum Stannate Materials", <u>To be submitted</u> to Sensors and Actuators B: Chemical, in August 2013.

3 more publications currently being prepared for H_2S and SO_2 sensing.

Background

Background– Sensor Requirements

Regardless of Sensor Type:

- a) Chemically stable
- b) Reversible
- c) Fast
- d) Highly sensitive
- e) Durable
- f) Simple operation
- g) Small size (portability, reduction in cost, rapid response)

Background-High-Temp Solid State Sensors

*T. Armstrong presentation, 20th Annual Fossil Energy Conference (2006).

Chemiresistive- (Resistive-type)

- •Absorption / interaction with surface alters resistivity.
- •Typical operating $T \le \sim 600^{\circ}$ C (band gap and stability limited).
- •Simple design allows for micro-chemical sensor arrays.
- •Selectivity problem due to sensitivity mechanism.

Background- Chemiresistive Sensors

- 1. Adsorption of chemical species on metal-oxide surface causes redox reaction (change in current carriers).
- 2. Affects depletion area thickness resulting in a change in the resistance.
- 3. Metal-oxide semiconductor's (MOS) shape, size, composition, and surface characteristics controls the selectivity and sensitivity.
- 4. Nanomaterials provide ultra-high surface area and will enhance interaction with chemical species.

Presented in Previous Reviews (2010-2012)

- Hydrothermal processes for synthesis of ionic and mixed-conducting <u>zirconate, stannate, and titanate</u> <u>pyrochlores</u> (3-10 nm).
- Resistor-type, macro-sensors of composite nanomaterials sense 500-4000 ppm H₂ (in air) at 600-1000°C.

 $Gd_{1.8}Y_{0.2}Zr_{2}O_{7}$

- 3) Nano-zirconate and SnO_2 /zirconate nano-composites displayed enhanced stability.
 - From 0.792%/hr to 0.016%/hr
 (0.014 sensitivity for 500 ppm at 1000°C)
- 4) Initiated work on Pt-based micro-IDEs that are stable to 1200° C.
- 5) Initiated development of micro-casting and Dip Pen Nanolithography (DPN) processes for fabricating micro-sensor arrays.

Challenges Current Work Addresses:

- 1) High-temperature stable micro-electrodes.
 - a. Develop stable, DC sputtered micro-electrodes for specific sensing mechanism.
 - b. Method for depositing and patterning potential complex microstructures and refractory metals.
- 2) High-temperature, stable, nanomaterials for sensing (H_2S, SO_2) .
 - a. Selective to species of interest.
 - b. React with other gas species in environment.
 - c. Morphological stability at high temperature due to sintering and coarsening mechanisms (Driving Force $\approx 1/D^n$).
- 3) Method to micro-pattern particulate nanomaterials.

High-Temperature Stable Electrodes (Inter-Digitized Electrodes, IDEs)

Strategy to Stabilize IDEs

Strategy to Stabilize IDEs

Schematic Representations

Platinum Layer				
Ceramic Substrate				
		•		
Platinum Layer	[425nm]			
Adhesion Layer	[35nm]	-		
Ceramic Sub	ostrate			
Platinum Layer	[85 nm]			
Intermediate layer	[10 nm]			
Platinum Layer	[85 nm]			
Intermediate layer	[10 nm]			
Platinum Layer	[85 nm]			
Intermediate layer	[10 nm]			
Platinum Layer	[85 nm]			
Intermediate layer	[10 nm]			
Platinum Layer	[85 nm]			
Main Adhesion Layer	[35 nm]			

Pure Pt

BILAYER COATING ARCHITECTURES

Titanium	Ti+Pt
Tantalum	Ta+Pt
Zirconium	Zr+Pt
Hafnium	Hf+Pt

MULTILAYER COATING						
ARCHITECTURES						
Zirconium	L-Zr+Pt					
Hafnium Hf+L-Zr+Pt						

Ceramic Substrate

Summary: IDE Stabilization

1 hour <u>1200°C</u>, ρ=∞(10⁻⁹Ω.m)

Hf adhesion layer + Zr+Pt

composite

Ti or Ta adhesion layer + Pt layer

Summary: High-Temp IDE Patterning

•Simple Lift-off process for electrode manufacturing.

(a) Zr + Pt bilayer electrode after annealing at 1200C 15 h

(b) Close look After annealing at 1200°C for 15 h.

(c) As-deposited Hf/L-Zr + Pt multilayer electrode, inset shows the edges closely.

(d) High magnification SEM image shows the edge of 15 h 1200°C annealed electrode.

(e) High magnification SEM image shows the edge of Hf/L-Zr + Pt electrode after annealing at 1200°C for 15 h.

Nano-Derived Sensing Materials And Testing

Background-Sensing Materials for Sulfur Compounds

<u>Chemiresistive and Potentiometric</u>, and very limited number SAW devices.

Chemiresistive Type

 $\mathbf{WO}_{\mathbf{3}}$ thick/thin film with different deposition methods

WO₃ with different noble metal loadings (Pt, Pd, Au, Ag)

 TiO_2 , V_2O_5 modified **WO₃** and loaded with Au

NASICON-V₂O₅/WO₃/TiO₂ and/or decorated with noble metals

 $Cr_{2-x}Ti_{x}O_{3}$ (insufficient sensing at temperature range 100-350°C).

Ferrites, 0-10% even at temperatures between 100-400°C

V-doped TiO₂, 1000 ppm SO₂

Morris et al., J.Mat. Che, 2001

Potentiometric Type

Na₂SO₄-BaSO₄-Ag₂SO₄

YSZ-LiSO-MgO

Li₂SO₄–BaSO₄

 $(AI_{0.2}Zr_{0.8})_{10/19}Nb(PO_4)_3$

Li₂SO₄-doped La₂O₂SO₄

NASICON, ß-alumina and YSZ

 ${\rm K_2SO_4Li_2SO_4-Ag_2SO_4}$

•Commercial product able to work up to 50°C.

•Not able to work at temperatures higher than 500°C

•Simple structure, design and packaging, cheap.

Background-Sensing Materials for Sulfur Compounds

General proposed reactions that occur during sensor operation.

<u>H₂S</u>

$$\begin{split} H_2 S_{(ads)} &+ 3O_{(s)}^{2-} \rightarrow SO_{2(g)} + H_2 O + 6e^- \\ H_2 S_{(ads)} &+ 3O_{(s)}^{2-} \rightarrow 2SO_{2(g)} + H_2 O + 3e^- \\ H_2 S_{(ads)} &+ 3O_{(s)}^{2-} \rightarrow SO_{2(g)} + H_2 O + 6e^- \\ H_2 + O_{(ads)}^- \rightarrow H_2 O + e^- \\ H_2 S_{(ads)} &+ O_{(ads)}^- \rightarrow H_2 O + SO + e^- \end{split}$$

 SO_{2} $SO_{2} + O_{ads} \rightarrow SO_{3} + V_{0}^{X}$ $SO_{2} + O_{lattice} \rightarrow SO_{3} + V_{0}^{X}$ $V_{0}^{X} \rightarrow V_{0}^{"} + 2e^{-}$ $2SO_{2}(gas) + O_{2}(gas) \rightarrow 2SO_{3}(gas)$ $SO_{3} + e^{-} \leftrightarrow SO_{3}^{-}(ads)$

S. K. Pandey et. al., Trends in Analytical Chemistry, Vol. 32, 2012

Testing Protocol

Macro Platform Properties and Testing Procedure

- Polished alumina substrates.
- Pt-IDEs screen-printed and annealed at 1200°C.
- \bullet Sensing material printed onto electrodes and sintered at 1200°C (~100 μm thick).
- •Three different temperature regimes (600, 800, 1000°C)
- •Three different O₂ partial pressures (1, 5 and 20 %)
- After each exposure to CO, H_2 , SO_2 and H_2S , 30 minutes N_2 atmosphere relaxation.

Screen-printed Macro Electrode (250 μm finger spacing)

Evaluation Sensing Materials for SO₂

•Tungstates and molybdates , wide band gap semiconductors (4-5 eV) and doubleprevoskites

- •Microstructural, chemical and morphological stability at high temperatures.
- •WO₃
- •WO₃ nano
- •MoO₃
- •MoO₃ nano
- •MgMoO₄
- •NiMoO₄
- •NiWO₄
- • Sr_2MgWO_6 (SMW)
- •Sr₂MgMoO₆ (SMM) •SrMoO₄
- •SrMoO₄ nano
- •SrWO₄

• Candidate compositions were tested in macro scale due to their sulfur uptake capabilities and suitable ones synthesized in nano-scale for further sensor tests.

J. A. Rodriguez, Catalysis Today, 2003

Evaluation Sensing Materials for SO₂

•2000 ppm SO₂ at 600, 800 and 1000 °C with 1% O₂.

•A few of the compositions will be discussed in details

Summary: Evaluation Sensing Materials for SO₂

SrMoO₄ and SrWO₄ showed

- Highest sensitivities at high temperature
- Lowest cross-sensitivities against CO and H₂
- Long term stability (100 h)

Evaluation Sensing Materials for H₂S

SrMoO₄, SrWO₄, NiWO₄

•The tests were conducted with 5, 50 and 100 ppm $\rm H_2S$ balanced with $\rm H_2$ and 1% $\rm O_2$ Background.

Evaluation Sensing Materials for H₂S •800°C p-type, however 1000°C as expected n-type response.

Not able to distinguish, 5, 50, and 100 ppm H₂S at 800 and 1000°C
Long term stability (48 h testing) test showed similar reduction behavior.

•Sensitive towards 5, 50, and 100 ppm H₂S at 800 and 1000°C

N-type behavior

•Long term stability (48 h testing) test showed similar sensing behavior.

- •Sensitive towards 5, 50, and 100 ppm H_2S at 800 and 1000°C
- P-type behavior
- Long term stability (48 h testing)

Possible Solutions to stop the coarsening of nano-SrMoO₄

- 1. Grain pining
- 2. Templated growth of SrMoO₄, over a core refractory-oxide structure

1. Grain pining

•Limited success !!!

2. Templated growth of $SrMoO_4$, over a core refractory-oxide structure.

•For this purpose, MgO nanorods were synthesized.

<u>2. Lost-Template Growth</u>, over a core refractory structure with nano-features. Core structure totally lost, confirmed by XPS, EDS and XRD not included.

And tried grow SrMoO₄ over MgO, worked...

COMPARISON

•Higher surface area and very porous network for efficient gas penetration survived...Temporary testing facility established and this material about to be tested.

•SrMoO₄ nano-flowers after 5 h 1000°C in air. •SrMoO₄ nano-flowers over MgO after 5 h 1000°C in air.

SUMMARY: Nano-Derived Sensing Materials And Testing

•SrMoO₄ and SrWO₄ showed superior sensing capabilities at high temperature.

•High-temperature coarsening resistant SrMoO₄ was synthesized by lost-template method showed increased sensitivity.

•Long term stability tests showed reliability of the SrMoO₄ and SrWO₄

Micro-Sensor and -Array Fabrication and Testing

Micro-sensor Array Fabrication

- SU8-25 (Microchem)
 - From 20-90 μm depth depending on spin rate
- OAI UV Flood Exposure System
- SU8 developer
- 2) Sensing material is casted into mold.
- Mold is burned off and material is sintered or bonded to substrate.

Micro-sensor Array Fabrication

Micro-Casting - SEM

Micro-casting of Sensor Arrays

Nano-SnO₂

Nano-Gd₂Zr₂O₇

Nano-10% SnO₂/90% Gd_{1.8}Y_{0.2}Zr₂O₇

Nano-SnO₂ and $Gd_{1.8}Y_{0.2}Zr_2O_7Arrays$

Micro-sensor and arrays fabricated with nano-SnO₂ and nano-SnO₂/zirconate materials.

Initial Micro-sensor Testing (with Nanomaterials)

Nano-10% SnO₂/90% GZO

- Micro-IDEs were fabricated by sputtering process.
- 29 fingers were spaced 50 µm apart with a sensing area of 1.2 mm x 3 mm.

SnO₂ sensor

 Sensitivity of 0.812 and 0.010 at 600 and 800°C to 4000 ppm of H₂

10% SnO₂/90% GZO sensor

 Sensitivity of 0.097 and 0.047 sensitivity at 600 and 1000°C, respectively, to 4000 ppm of H₂

Compared to Macro-Sensors

~63% increase in response rate ~200% increase in sensitivity

N₂ with ppm H₂ (10% oxygen atmosphere)

(b)

Micro-Patterning Techniques

Dip Pen Nanolithography (DPN)

Direct drawing delivers multiple materials onto a single substrate.
Typically used to deposit organic material (DNA, cells, peptides, polymers).

Thompson et al., Biosensors and Bioelectronics, 26 (2011).

Agarwal et al., Thin Solid Films, 519(2010).

DPN of Nano-Inks on Untreated Substrate

- Ink shows $\theta \approx 35^{\circ}$ on both substrates.
- Uniform size and shape dots (5-10 μ m) possible on alumina substrate.
- Ink #2 dots on alumina substrate retain shape through drying.
- Direct-writing of continuous line not possible on neither substrates (contact angle too high, >25° for line drawing).

DPN of Nano-Inks on Electroded Ceramic

<u>Substrates</u>

- Patterning on ceramic (polycrystalline) substrate with metallic electrodes.
- Difficult due to difference in wetting characteristics of each grain and metal vs. ceramic.
- Ink pattern on a substrate without a coating shows the ink stumbling over the metallic/ceramic interchanges.
- CTAB coating provides a single chemistry surface over the IDEs on multigrain ceramic substrate.
- CTAB coating enables patterning of inks.

Work Summary

- 1. High-temperature interdigitzed electrodes (IDEs).
 - High temperature IDEs (stable to 1000 ℃) were developed and method for micro-patterning.
- 2. Sensing Materials for Sulphur Compounds.
 - Ternary tungstates and molybdates were synthesized at the micronand nano-scale, and tested for H₂, SO₂ and H₂S.
 - High sensitivities were measured >800°C, but the as-synthesized nanomaterial morphologies was not stable.
- 3. High-temperature Stablization of Ternary Mo/W Nanomaterials
 - Nano-SrMoO₃ (which showed high sensitivity to SO₂) was grown over nano-fiber MgO to form a high-temperature stable nano-morphology.
- 4. Micro-sensors and Array Fabrication
 - Micro-molding process was developed to deposit forms down to ~10 $\mu m.$
 - Micro-sensors and basic arrays (with synthesized nanomaterials) were fabricated on stable IDEs.

Future Work

- Alternative core structures for templated growth of nanomaterials.
- Fabrication and testing of the micro-sensor platform for SO₂, H₂ and H₂S.
- Longer term testing of the micro-sensors for >100 h.
- Further investigation of sensing mechanism by ECR (electrochemical relaxation) supported by XPS and FT-IR.

Acknowledgments

- This research was funded by US Department of Energy University Coal Research (UCR) program under contract DE-FE0003872. We want to thank DOE for their support.
- WVU Shared Research Facilities.
- We also would like the acknowledge Dr. Kolin Brown, Dr. Wei Ding. Mr. Harley Hart for their assistance.

