High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems

Jian Cai1 Ricardo Marquez1 Michael F. Modest2

1Postdoctoral Research Associate
2Shaffer and George Professor of Engineering
University of California Merced
Merced, CA 95343, USA

DE-FG26-10FE0003801

May 2012 — Pittsburgh
Radiation Challenges in Multi-Phase Reacting Flows

Radiative heat transfer in high temperature combustion systems
- Thermal radiation becomes very important at elevated temperatures
- Coal and hydrocarbon fuels $C_nH_m \rightarrow H_2O, CO_2, CO, NO_x$, soot, char, ash
- CO$_2$, H$_2$O, soot, char and ash strongly emit and absorb radiative energy
 (lower temperature levels)
- Radiative effects are conveniently ignored or treated with very crude models
 - Neglecting radiation \Rightarrow temperature overpredicted by several hundred °C
 - "optically-thin" or gray radiation \Rightarrow temperature underpredicted by up to 100°C
 - Neglecting turbulence–radiation interactions \Rightarrow temperature overpredicted by 100°C or more
- In contrast: simple vs. full chemical kinetics \Rightarrow same overall heat release and similar temperature profiles
State of the Art of Radiation Modeling

- **Radiative Transfer Equation (RTE) Solvers**
 - DOM/FVM included in CFD codes (ray effects, poor for optically thick media, high orders expensive)
 - SHM/P–N: $P–1$ in CFD codes (cheap and powerful; poor for optically thin media); higher orders ($P–N$) complex
 - Photon Monte Carlo (very powerful; expensive, statistical scatter); ideal for stochastic turbulence models
 - $P–1$ ideal solver for optically thicker pulverized coal/fluidized beds

- **Spectral Models**
 - Full-spectrum k-distributions (very efficient; cumbersome assembly, species overlap issues)
 - Line-by-line Monte Carlo module (outstanding accuracy at small additional cost)
Research Objectives

1. Spectral radiation properties of particle clouds
 - coal, ash, lime stone, etc.,
 - varying size distributions and particle loading
 - classified, pre-evaluated and stored in appropriate databases or regression models

2. Spectral radiation models for particle clouds
 - Adapt high-fidelity spectral radiation models for combustion gases
 - Extensions to large absorbing/emitting–scattering particles in fluidized bed and pulverized coal combustors
 - New gas–particle mixing models and consideration of scattering

3. RTE solution module
 - $P-1$ (and perhaps a $P-3$) solver (for optically thick applications)
 - Photon Monte Carlo solver (for validation and for optically thinner applications)

4. Validation of Radiation Models
 - Module connected to MFIX and OpenFOAM
 - Comparison with experimental data available in the literature
 - Simulations for fluidized beds and pulverized-coal flames
Accomplishments

- Radiative spectral properties database and regression models
 - Surveyed radiative properties measurements of coal combustion particles
 - Compiled a radiative property database of particles in coal combustion

- Spectral calculation models
 - Ported previously developed gas-soot module to MFIX
 - Generated CO₂ and H₂O k-distribution correlations
 - Developed particle spectral properties calculation module
 - Developed new regression scheme for splitting radiative heat source
 - Ported spectral module to OpenFOAM

- Radiative Transfer Equation (RTE) solver
 - Implemented P-1 RTE solver for both gray and nongray participating media
 - Implemented Monte Carlo RTE solver for both gray and nongray media
 - Verification against line-by-line (LBL) solutions for 1D homogeneous slab
 - Source code submitted for review

- CFD simulation
 - Radiative heat transfer in a fluidized-bed coal combustor (P-1 with CO2-char k-distribution)
RTE Solution Module

\(P-1\) Solver:

- Ideal RTE solver for expected large optical thicknesses
- Single-scale full-spectrum \(k\)-distribution, assembled from narrow-band data for particulates and gas \(k\)-distributions
- One RTE solution, but separate emission and absorption terms for individual phases
- Extending to higher orders – \(P-3\) and \(P-5\).

Photon Monte Carlo Solver

- Ported from our gas combustion work with LBL module
- Particulate emission and absorption added including extended wavenumber selection schemes and energy splitting across phases.
- To ascertain accuracy of \(P-1\)/replace it whenever necessary
Sample calculation–inhomogeneous medium

- **One dimensional slab with two layers**

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>5cm</td>
<td>5cm</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>600K</td>
<td>1200K</td>
</tr>
<tr>
<td>Composition</td>
<td>5%CO₂, 95%(N₂+O₂)</td>
<td>10%CO₂,90%(N₂+O₂)</td>
</tr>
<tr>
<td>Particles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>500K</td>
<td>1300K</td>
</tr>
<tr>
<td>Diameter</td>
<td>200µm</td>
<td>100µm</td>
</tr>
<tr>
<td>Volume fraction</td>
<td>10⁻³</td>
<td>2.5 × 10⁻⁴</td>
</tr>
<tr>
<td>Refractive index</td>
<td></td>
<td>2.2 – 1.12i</td>
</tr>
</tbody>
</table>

- **RTE solver** P_1
- **64 quadrature points**
Sample calculation–inhomogeneous medium, cont’d

- Predicts major trends
- Gas heat source is one order less but vary accurate
- Gas radiation is from strong bands, regression scheme picks solid absorption coefficient at the corresponding wavenumbers
- Cold layer solid heat source inaccuracy due to $I_\eta \neq I_{b\eta}$
- Hot layer solid heat source within 1%
Line-by-line Photon Monte-Carlo

- Fully implemented a LBL-PMC module on MFIX for gas-particle mixtures, including energy splitting across phases.
- Validated PMC calculations with exact calculations for simple geometries.
Buckius and Hwang Correlations

\[f_A = \int_0^\infty \pi a^2 n(a) da = \frac{3f_v}{4\bar{r}} \]

\[\kappa_0^* = 3 \left[\frac{m^2 - 1}{m^2 + 2} \right] \frac{6\pi f_v \eta}{f_A} = C_0 \frac{f_v}{f_A} \eta \]

\[\frac{\kappa}{f_A} = \kappa^* = \left[\frac{1}{(\kappa_0^*(1 + 2.30\kappa_0^{*2}))^{1.6}} + \frac{\kappa_0^{*1.76}}{1.66^{1.6}} \right]^{-1/1.6} \]

- If \(\kappa_0^* \ll 1 \), then \(\kappa^* = \kappa_0^* \).
- If \(1 \ll \kappa^* \), then \(\kappa^* = 1.66 \times \kappa_0^{*1.1} \)

\[a \]

Random number relations for solid phases

Random numbers vs η, T, f_v, f_A, C_0.

$$R_\eta = \frac{\int_0^\eta \kappa_\eta I_b \eta d\eta}{\int_0^\infty \kappa_\eta I_b \eta d\eta}$$

$$= \frac{\int_0^{\eta^*} \kappa_\eta^* (\xi \times \eta^*) I_{b\eta^*}(\eta^*) d\eta^*}{\int_0^\infty \kappa_\eta^*(\xi \times \eta^*) I_{b\eta^*}(\eta^*) d\eta^*}$$

(1)

Random numbers can be reduced to 2 variables.

Critical value at $\xi \approx 0.001$ and $\xi \approx 0.1$

Figure: Random number vs η and T. The curve fitting is applied to the parametric function $f(\eta/T) = 1/2 + 1/2 \tanh(a_1(\eta/T)^{0.4} + a_2)$.
Curve-fitting coefficients for Random Number Relations

![Graph showing curve-fitting coefficients](image)

\[a_1(\xi) = \frac{2.826}{\exp(c_{12}(\log_{10} \xi + c_{11})) + 1} + \frac{2.673}{\exp(-c_{14}(\log_{10} \xi + c_{13})) + 1} \]

\[a_2(\xi) = \frac{-4.480}{\exp(c_{22}(\log_{10} \xi + c_{21})) + 1} + \frac{-3.738}{\exp(-c_{24}(\log_{10} \xi + c_{23})) + 1} \]
Planck-mean absorption coefficients

\[\log \left(\frac{\kappa_P^*}{\xi} \right) = \frac{2.425}{\exp(c_{32} \log_{10}(\xi) + c_{31})} + 1 + \frac{-1.1592 \log_{10} \xi - 0.15649}{\exp(-c_{34} \log_{10}(\xi) + c_{32})} + 1. \]
LBL-PMC Energy Splitting Across Phases

Absorption

Absorption rates can be calculated using the following equations:

\[
Q_{\text{abs},g,j} = \sum_{i,k \in \mathbb{I}_j,\mathbb{K}_j} Q_{ij}^k \left(1 - \exp(-\Delta \tau_{\eta,ij}^k) \right) w_g,
\]

\[
Q_{\text{abs},sm,j} = \sum_{i,k \in \mathbb{I}_j,\mathbb{K}_j} Q_{ij}^k \left(1 - \exp(-\Delta \tau_{\eta,ij}^k) \right) w_{sm},
\]

where

\[
k_{g,i} = \left(\sum_n \kappa_{\eta,n,x_i} \right) p_{g,i}
\]

\[
k_{s,m,i} = f_A \kappa_{\eta,s,m}^* (\xi_{m,i})
\]

\[
\xi_{m,i} = C_0 \varepsilon_{s,m} / f_A T_{s,m,i}
\]

\[
w_{g,j} = \frac{\kappa_{\eta,g,j}}{\kappa_{\eta,g,j} + \sum_{m=1}^{N_s} \kappa_{\eta,s,m,j}}
\]

\[
w_{s,m,j} = \frac{\kappa_{\eta,s,m,j}}{\kappa_{\eta,g,j} + \sum_{m=1}^{N_s} \kappa_{\eta,s,m}}
\]

Emission

Emission rates are calculated as follows:

\[
Q_{\text{emi},g,i} = 4\pi \bar{F}_{g,i} \sigma T_{g,i}^4 V_i
\]

\[
Q_{\text{emi},s,m,i} = 4\pi \bar{F}_{s,m,i} \sigma T_{s,m,i}^4 V_i
\]

where

\[
\bar{F}_{g,i} = \left(\sum_n \bar{F}_{p,n,x_i} \right) p_{g,i} \varepsilon_{g,i}
\]

\[
\bar{F}_{s,m,i} = \frac{\varepsilon_{s,m,i}}{\bar{r}} \bar{F}_{s,m}^* (\xi_{m,i})
\]

\[
\xi_{m,i} = C_0 m^4 / 3\bar{r} T_{s,m,i}
\]
Example calculations

(a) Mixture at 650K

\[T_g = 650 \text{ K}, \quad \varepsilon_g = 0.99, \quad x_{CO_2} = 0.10, \]
\[T_s = 650 \text{ K}, \quad \varepsilon_{\text{coal}} = 0.01, \quad R_s = 10^{-5} \text{ m} \]

(b) Mixture at 1650K

\[T_g = 1650 \text{ K}, \quad \varepsilon_g = 0.99, \quad x_{CO_2} = 0.10, \]
\[T_s = 1650 \text{ K}, \quad \varepsilon_{\text{coal}} = 0.01, \quad R_s = 10^{-5} \text{ m} \]

Figure: line-by-line PMC and exact solutions of \(Q_{\text{abs}} \) for gas- and solid-phase mixture enclosed by a cylinder.
Fluidized bed

Figure: Colored lines are from exact solution. Black lines are PMC calculations.
Effort for Remaining Year

- Set up simulation of radiative heat transfer in dilute gas-solid reacting flows
- Comparisons between P-1 and Monte Carlo RTE solver
- Comparisons between various spectral models