

Gallium Oxide Nanostructures for High Temperature Sensors

C.V. Ramana (PI)

Evgeny Shafirovich (Co-PI) Mechanical Engineering, University of Texas at El Paso Students: Ernesto Rubio (PhD); S.K. Samala (MS) A.K. Narayana Swamy (PhD); K. Abhilash (MS)

> Program Manager: Richard Dunst, NETL, DOE Project: DE-FE0007225 Project Period: 10/01/2011 to 09/31/2014

06/12/2013

DOE UCR/HBCU Conference, June 11-13, 2013

TP

Outline

- Introduction
- Research Objectives
- Experiments
 - ► Synthesis
 - Characterization
- Results and Discussion
 - Pure Ga₂O₃ Thin Films
 W-doped Ga₂O₃ Thin Films (Physical Methods)
- Summary & Future Work

Introduction

Gallium Oxide (Ga₂O₃)

♦ Wide band gap (>5 eV) semiconductor *High thermal and chemical stability $(T_m: 1725 \text{ °C})$ *Due to a high melting point and stable structure, it is one of the most suitable materials for high temperature gas sensing.

Objectives and Goals

<u>Objective 1</u>: To fabricate high-quality pure and doped Ga_2O_3 -based materials and optimize conditions to produce unique architectures and morphology at the nano scale

Objective 2: Derive the structure-property relationships at the nanoscale dimensions and demonstrate enhanced high-temperature oxygen sensing and stability

<u>Objective 3</u>: To promote research and education in the area of sensors and controls

<u>Goal</u>: Design the high temperature oxygen sensors (employing Ga_2O_3 -based nanostructures)

Experiments

Materials

 $\frac{\text{Target (for Deposition)}}{\text{Ga}_2\text{O}_3 \& \text{W}}$

- Substrate(s):
- Si(100)
- Alumina

Fabrication – Thin Films

- RF magnetron sputtering
- Deposition Conditions
 Fixed:
 - Base pressure ~10⁻⁶ Torr
 - Powers: $Ga_2O_3 \rightarrow 100 W$
 - Target-Substrate distance: 7 cm
 - Sputtering gas: Argon + O₂

Variables:

Sample set 1 (Intrinsic):

Substrate Temperature: RT-500 °C

Sample set 2 (W-Doped):

Tungsten Target Power (50 to 100W)

Substrate Temperature = $500 \degree C$

Sample set 3 (W-Doped):

Target Powers = const.; Substrate temperature varied from 500 to 800°C

Characterization

Characterization (cont.)

High Temperature Furnace for annealing process

UV-vis-Spectrophotometry

Results and Analysis

Crystal Structure

500 °C is favorable to provide sufficient energy for Ga_2O_3 film crystallization (β -phase)

L = $L_o \exp(-\Delta E/k_B T)$ L: Average size L_0 : Pre-exp. factor (film, substrate materials) ΔE : Activation energy, k_B : Boltzmann constant and T: Absolute temperature.

Morphology

Composition - RBS

Composition - XPS

Ga 2p peak

Sputtered

Chemical Shift in Ga 2p BE – ~1118 eV; ~1145 eV

• As Grown

Original Ga 2p BE – 1117eV; 1144 eV (represented by blue lines)

2p3/2 2p3/22p1/22p1/2600 C 600 C Intensity (arb. units) Intensity (arb. units) 500 C 500 C RT RT 1160 1150 1140 1120 1110 1160 1150 1140 1130 1120 1110 1130 Binding Energy (eV) Binding Energy (eV)

Microstructure – Phase Diagram

Electronic Properties

Tungsten Doping

Chemical Composition (RBS)

W-Doped films

W-Power (Watts)	W-Content (Atomic %)	Thick -ness
0	0	38 nm
50	8.35	32 nm
75	9.58	42 nm
100	12.5	51 nm

06/12/2013

Crystal Structure – Power dependence

Morphology (Power Dependent)

Pure Gallium Oxide Films show grains throughout the surface, and W-doped films avoid crystallites complete growth

 $T_s=500^{\circ}C$

06/12/2013

DOE UCR/HBCU Conference, June 11-13, 2013

Band Gap (Power dependence)

E.J. Rubio and C.V. Ramana, Appl. Phys. Lett. 102, 191913 (2013).

DOE UCR/HBCU Conference, June 11-13, 2013

Crystal Structure – (after annealing)

Deposition Temperature $T_s=500 \,^{\circ}C;$ Annealing Temperature $T_a=700 \,^{\circ}C$ for 30 min

Crystal Structure – (Temp. Dependent)

Only β -phase presented for all films.

Why does it work?

Impact

Journal Publications:

- 1. E.J. Rubio and C.V. Ramana, Appl. Phys. Lett. **102**, 191913 (2013).
- 2. A.K. Narayana Swamy, E. Shafirovich, and C.V. Ramana, Ceram. Inter. **39**, 7223 (2013).
- S.K. Samala, E.J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C.V. Ramana, J. Phys. Chem. C 117, 4194 (2013).
- 4. Two others (under preparation)

Conference Presentations:

- 1. International Materials Research Congress (IMRC) to be presented
- 2. International Conference on Metallurgical Coatings and Thin Films, April 29 May 3, 2013, San Diego, CA
- 3. AVS International Symposium, October 28 November 2, 2012 Tampa, FL

4. Southwest Energy Symposium, March 24, 2012, El Paso, TX06/12/2013DOE UCR/HBCU Conference, June 11-13, 2013

Education & Training:

- 1. Ernesto J. Rubio: PhD (Full)
- 2. A.K. Narayana Swamy: PhD (part of disseration)
- 3. Sampath K. Samala: MS (thesis)
- 4. Abhilash Kongu: MS (non-thesis)

DOE UCR/HBCU Conference, June 11-13, 2013

Future Work

Detailed Electrical and Sensor Characteristics (UTEP)

SUNY – Michael Carpenter (Plasmonics)

Summary & Conclusions

- Pure and W-doped Ga-oxide thin films were grown and characterized
- Experimental conditions were optimized to obtain Ga-oxide materials with wide controlled structure and morphology in a wide range
- Stability of β-phase with controlled electronic properties is demonstrated (with W-incorporation)
- Preliminary results obtained on the electrical properties are encouraging

Acknowledgements

- DOE-NETL
- Richard Dunst
- EMSL/PNNL, Richland, WA

THANK YOU!