

Computational-Experimental Study of Plasma Processing of Carbides at High Temperatures

Arturo Bronson and Vinod Kumar Department of Mechanical Engineering University of Texas at El Paso Program Manager: Richard J. Dunst National Energy Technology Laboratory DOE Award – FE0008400

High Temperature Research Group

Graduate Students

- Alejandro Garcia (Computational Masters)
- Arturo Medina (Computational Masters)
- Sanjay Shantha-Kumar (Experiment Ph.D.)*
- Senior Students
 - Alberto Delgado (Experimental Mechanical / Metallurgical Engineering)

* Aids students in high temperature research.

Motivation/Impact of Research

- Use electromagnetics to control plasma surface reactions.
- Use plasma processing to create temperature extremes.
- Use temperature spikes to form metastable phases.
- Use electromagnetics to change diffusional flux.

Outline of Presentation

- Introduction Processing
 - Scale of SiO₂, Al₂O₃ and TiO_x
 - Vaporization/Surface Kinetics
 - Packed Bed Reactivity
 - Plasma Surface Reactions
- Computational Effort thermodynamics and heterogeneous kinetics using plasma gas
- Strategic Experimentation SiC, ZrC-TiO₂-Y₂O₃, Ti₂AIC-TiC-Y₂O₃
- Progress and Analysis

Scale Ma 3 ZZ ≺ZO

Kellogg Diagram for Ti-O System (2500 K)

Vaporizing Flux of SiO₂ and TiO₂

Project Objectives

- Investigate the effects of plasma surface reactions within pores of carbide packed bed;
- Investigate the effect of the potential gradients of the electromagnetic field on mass transfer;
- Investigate the effect of temperature spikes on pore surfaces.

S Ti₂AIC-TiC Υ₂O₃ Matr √203 Lay TiO2-A'

Scale

Oxygen Permeability

- For temperatures between 1700 to 1500° C Al₂O₃ and Y₂O₃ have oxygen permeability ≤ 10⁻⁹ gO₂/(cm-s) and 3•10⁻⁹ gO₂/(cm-s), respectively.
- Oxygen permeability of ZrO₂-Y₂O₃ and HfO₂-Y₂O₃ increases by approximately an order of magnitude [i.e., ≥ (10)⁻⁸ gO₂/(cm-s)].

Stabilities-Oxides and Carbides

Ti-C-O Stability Diagrams at 1273 & 1973K for Expanded View of Magneli phases & p₀₂

Ti-C-O, 1273 K

Possible Scale of Oxidized Ti₂AIC-TiC

- Ti oxides depend on pO₂ level within scale.
- Muan/Osborn showed limited solubility of Al₂O₃ -Al₂O₃•TiO₂ and Al₂O₃•TiO₂ - TiO₂
 pseudobinaries.
- Al₂O₃•TiO₂ melts congruently at 1860° C as per Muan/Osborn.

Al₂O₃ - TiO₂ - O₂

COMSOL Simulation of B₄C Spheres Basis for Packed Bed with Temperature Profile

- Carbide spheres configured in an Xpattern rotating along centerline.
- Time=3600 Surface: Temperature (degC) 4 1700.5 4 1700.5 1 600 1 400 1 200 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 200 1 000 1 200 1 100.5 1 200 1 20

COMSOL Simulation of B₄C spheres in a packed bed

- Cylindrical graphite wall temperature is heated mimicking internal furnace wall.
- Carbide spheres touch each other with a 6-fold lateral configuration though each layer contacts uniformly.
- Spheres contacting the wall have highest temperature.
- Conductive heat transfer was used, but radiation will be added with expanded sphere number.

Extending Previous Kinetic Equations

 Grabke's equations [1965 and 1970] for oxygen
 transfer on metals (e.g., Fe)

$$\frac{dn_{O}}{dt} = ka_{O}^{-m}p_{CO2} - ka_{O}^{1-m}p_{CO}$$

- Wang et al. [2003] determined oxidizing sequence for Ti44AI11Nb alloy with X-ray photoelectron spectroscopy.
- Kurunczi, Guha and Donnelly [2006] on adsorption of oxygen (O_{ads}) on surface sites (V) from O2 plasma

$$O_{2} + 2V = 2O_{ad}$$

$$Al + O_{ad} \rightarrow AlO$$

$$AlO + O_{ad} \rightarrow AlO_{2}$$

$$AlO_{2} + O_{ad} \rightarrow AlO_{3}$$

$$Og + V \rightarrow O_{ads}$$

 $2O_{ads} \rightarrow O_{2(g)} + 2V$

Oxidized Species Measured on Ti-44AI-11Nb (at%) with X-ray Photoelectron Spectroscopy

- Oxygen exposure of L = t•p_{O2} (10⁻⁶ Torr•s)
- Slope of 2/3 acquired from kinetic rates of oxygen adsorption per AIO₃ formation (r_{ad}/r_{AIO3})

Future Efforts for Plasma Surface Reactions

- Incorporate electron energy (e.g., electron energy density (n_ε), gradient of electron flux vector (Γ_ε) and potential field (E)).

 ∂
 (n_ε) + ∇ · Γ_ε + E · Γ_ε = R_ε (u · ∇)n_ε
- Incorporate kinetics of Ar-O₂ plasma-surface reactions with SiC and Ti₂AIC.
- Study the effect of temperature extremes (T and dT/dx) on metastable phases and/or segregation.

Summary

- Analyzed thermodynamic stability of oxygen potentials for TiO_x and TiO_x-Al₂O₃ for possible scale formation from Ti₂AIC-TiC components.
- Using primarily COMSOL, a commercial software package, incorporating the modules of heat transfer, kinetics, plasma as well as its material database to model surface plasma reactions.
- Incorporating the oxidation of Ti-AI-M as a basis for the plasma-surface reactions.
- Determining the effect of charged surface sites attracting ultimately the oxygen for surface reactions.

Questions and Comments

Slides to Respond to Possible Queries Follow

Parabolic Growth Rate of Scale

Electron-Energy Transport

 Should consider electron, ions and neutral species balance coupled with electron energy and momentum balances.

$$\frac{\partial}{\partial t}(n_{\mathcal{E}}) + \nabla \cdot \Gamma_{\mathcal{E}} + \mathbf{E} \cdot \Gamma_{\mathcal{E}} = R_{\mathcal{E}} - (\mathbf{u} \cdot \nabla)n_{\mathcal{E}}$$

$$\frac{\partial}{\partial t}(n_e) + \nabla \cdot \left[-n_e(\mu_e \cdot \mathbf{E}) - \mathbf{D}_e \cdot \nabla n_e\right] = R_e$$

Kellogg Diagram for Si-O System (2500 K)

SEM image after spark-plasma sintering

- ZrB₂ oxidizes to ZrO₂ dissolving some Y₂O₃
- Stringers of Y₂O₃ appear in grain boundary
- Graphite seems to minimize TiC oxidation.

Oxidation in Silicide Furnace with air and C/CO/N₂ atmospheres at 1700 °C

- Spark plasmasintered samples
- ZrO₂-8 wt% Y₂O₃ crucible covers were used to hold samples.
- Hf foil were also used to hold samples.

Oxygen Levels for TiO_x with Calculated Ti-ZrB₂-O₂ Phase Diagram

0 -2 Slag+ZrTiO₄+t-ZrO Slag+TiO₂+ZrTiO + t-ZrO Slag+ZrTiO₄ -6 $B_2O_3(liq)$ log₁₀(p(O₂)) (atm) -8 Slag+Rutile -10 Slag Slag + t-ZrO₂ Slag -12 Slag+Ti₂O Slag+Ti₂O₅+t-ZrO₂ -14 Slag+TiB2+t-ZrO2-Slag+TiB2+t-ZrO2 -Slag+Ti₃O₅ -16 B₂O₃(liq) +TiB₂ +t-ZrO₂ TiB₂ +Ti₂O₃+t-ZrO₂ ZrB₂+TiB₂+t-ZrO₂ -18 TiO+TiB₂+t-ZrO₂ iB+TiB,+t-ZrO -20 TiO+TiB+t-ZrO, ZrB₂+TiB+t-ZrO₂ -22 0.4 0.6 Ti/(Ti+ZrB₂) (mol/mol) 0 0.2 0.8

Ti - ZrB₂ - **O**₂ 1500°C

- Ti oxides start to form near p_{02} > 10⁻²² atm with TiO.
- Ti_2O_3/Ti_3O_5 has $p_{O2} = 10^{-15.5} atm$
- ZrB₂ oxidizes to t-ZrO₂ with Ti oxides.
- Liquid oxides form with increasing p_{O2}

Oxidized 30ZrB₂-13TiC-37Y₂O₃-20Ta sample for 3 minutes at 1700°C

- Oxidized area becomes ZrO₂-TiO₂-Y₂O₃
- Ta forms Ta₂O₅ upon oxidation with vaporization

Remodeling Departmental Materials and Structures Laboratory (Dynamic)

- Other than standard 120VAC, will need:3phase,
- 480 VAC in Bay 2 (encircled - blue)120A,
- 3-Phase, 240VAC in Bay 4 (encircled - green) 40A,
- Single Phase, 210VAC in Bay 5 (encircled – red)50A,
- 3-Phase, 240VAC in Bay 5 (encircled red)50A,
- 3-Phase, 240VAC in Bay 6 (orange) Purple Area.

Seek DURIP Request for Ultra-high Temperature Furnace • Dielectric induction furnace

(3-7 MHz) reaching 2600 or 3500°C Four Infrared pyrometers Staneico Support AFOSR/ONR efforts Enclosure Insulation Induction Coil ZrO₂ Sighting tubes ZrO₂-Y₂O₃ Susceptor

Phases identified for oxidized sample in C/CO/N₂

Calculated Zr-Ta-O₂ and Ti-Ta-O₂ phase diagrams

Zr as primary component in B₄C reaction on Zr-B-C phase diagram

- Zr liquid changes with alloy composition
- Zr reacts with B₄C forming ZrC and ZrB₂ as a result of the mass balance.

Ti-Zr-O₂ Phase Diagram at 1973 K

Zr Si_xZr intermetallics (SiZr₂, ZrSi₂ Si Si_2Zr_3 , Si₄Zr₅, SiZr) not shown.

Oxygen Partial Pressure Gradient

X-FEM Basics

 Extend finite element approximation space to reproduce "difficult" functions.

$$u^{XFEM}(x) = \sum_{I \in \mathcal{N}} N_I(x)u_I + \sum_{J \in \hat{\mathcal{N}}} N_J(x)\Psi(x)a_J$$

Standard Part Enriched Part

FEA MODEL OF THE MICROSTRUCTURE OF ZrB₂ / ZrC_{1-x} / Zr-Si_x SYSTEM

Optimal Configuration of ZrO₂ **Precipitates in SiO**₂ Matrix

Zr-Si-O Ternary at 1800° C

Sketch of Oxygen Diffusion Scale Sca

Graphite Enclosure in Dielectric Induction Furnace

- Melted previously ZrO₂ (2983 K)
- Control plasma formation with He and flow rate
- Deoxidized Ar and He flows
- Should improve temperature measurement

Configuration of Zr alloy/B₄C reaction system

- Zr-Y-Ti alloy reacting with B₄C contained in graphite crucibles at 2000 K plus.
- Closed thermodynamic system controls oxygen potential.
- Al/Al₄CO₄/Al₂O₃ establishes p_{O2} at 1000 K (follows concept of Komarek research group using pseudoisopiestic technique).

Stability of AI-C-O System at 1000 K and Zr-C-O System at 2500 K

Maheswaraiah, Sandate and Bronson - 2012

Diffusional Flux – Kinetics Issues

Temperature Measurement of Hf Melt Reacting with B₄C Packed Bed >

Surface Energies for Hf Alloy Melts Determined from Elements

Depth of Infusion into Packed Bed Driven by Surface Energies

Expand dσ/dx (e.g.,

$$\eta \frac{\partial \boldsymbol{u}_{\boldsymbol{x}}}{\partial \boldsymbol{y}} = \frac{\partial \sigma}{\partial \boldsymbol{T}} \frac{\partial \boldsymbol{T}}{\partial \boldsymbol{x}}$$

- Use Fluent to model computational fluid dynamics.
- Determine alloying effects (e.g., Hf-Y-Ti)

$$\Gamma_{i}^{Hf} = -\frac{1}{RT} \left(\frac{\partial \sigma}{\partial \ln \rho_{O_{2}}} \right)_{T, i \neq k}$$

• Determine σ with:

- Butler equation (Yeum, Speiser and Poirier-1989)
- Multicomponent ΔG incorporating σ using FactSage

Densification of ZrB₂-TiC-Y₂O₃ (with and without Ta) Composites Using Spark-Plasma Sintering at University of Arizona

Dr. Erica L. Corral¹ Luke S. Walker Victoria R. Marotto Dr. Arturo Bronson² Brenda Mota, Carlos E. Castillo David Pham, Alvaro Sandate

 ZrB_2 -TiC-Y₂O₃-Ta would react to form ZrO_2 -Y₂O₃-TiO₂-Ta₂O₅ determining TiO₂-Ta₂O₅ glassy phase.

 ¹ Department of Materials Science and Engineering, Arizona Materials Lab, The University of Arizona, Tucson, AZ
 ² Mechanical Engineering Department, The University of Texas at El Paso, El Paso, TX

Joint Work Between the Corral Lab and UTEP in Preparing ZrB₂-based ceramics with additions of Yttria and Ta for Improved Oxidation Resistance Through the Formation of Complex Oxide Scales

Material	Composition (wt%)								
	1	2	3	4	5	6	7	8	9
ZrB ₂	79.3	62.0	37.8	33	29	26	30	23	18
TiC	10.3	12.5	15.6	27	36	42	13	19	23
Y_2O_3	10.4	25.5	46.6	40	40	32	37	28	23
Ta*	-	-	-	-	-	-	20	30	36
Temperature (°C)	1600 1650 1700 ^t 1750	1500 1700 1750	1500 1700 1750	1700	1700	1700	1700	1750	1800

Sample volumes of 1.5 cm³ from a 20mm die.

* – Ta foil was finely cut and dispersed in the powder

^t – 3 samples of this composition produced

Compositions for ZrO₂-Y₂O₃-TiO₂-Ta₂O₅ scales

- In t-ZrO₂/c-ZrO₂ region
- Near c-ZrO₂/t-ZrO₂/TiO_{2,L} region
- Near c-ZrO₂/Y₂Ti₂O₇ region
- Ta added for Ta₂O₅-TiO₂ eutectic scale

Fabrichnaya and Levi -- 2008