Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO₂ Capture

(DOE/NETL Agreement No. DE-FE0004360)

Presenter: Yongqi Lu

Illinois State Geological Survey
Prairie Research Institute
University of Illinois at Urbana-Champaign

2013 NETL CO₂ Capture Technology Meeting

Pittsburgh, PA • July 8-11, 2013

Prime Contractor

- Illinois State Geological Survey (ISGS)
 - One of five scientific surveys at Prairie Research Institute, University of Illinois
 - 200 scientists and technical support staff
 - Lead organization of Midwest Geological Sequestration Consortium (MGSC) Partnership
 - ISGS's Applied Research Laboratory conducts carbon capture and other energy & environmental technology researches

Project Overview

Project Team

Illinois State Geological Survey-University of Illinois

- Bench- and lab-scale experimental studies
- Nick Devries, Yongqi Lu (PI), David Ruther, Manoranjan Sahu, Qing Ye, Xinhuai Ye, Shihan Zhang

Carbon Capture Scientific, LLC

- Risk analysis and techno-economic studies
- Scott Chen, Zhiwei Li, Kevin O'Brien (Sub-PI)

DOE/NETL (Funder)

Project manager - Andrew Jones

Illinois Clean Coal Institute (Co-Funder)

Project manager – Joseph Hirschi

Project Performance Dates and Budget

Project duration: 39 months

BP1: 1/1/11- 12/31/11

➤ BP2: 1/1/12 - 3/31/13

➤ BP3: 4/1/13 - 3/31/14

Budget

	Budget, \$
DOE/NETL	1,291,638
ICCI (cash)	201,000
UIUC (in kind)	134,357
CCS, LLC (in kind)	47,713
Total	1,674,708

(Cost share: ~23%)

Project Objectives

- □ Perform a proof-of-concept study aimed at generating process engineering and scale-up data to help advance the proposed CO₂ capture process to a pilot-scale demonstration level upon completion of the project
 - ISGS/UIUC team: Lab- and bench-scale tests to generate thermodynamics and reaction engineering data for major unit operations
 - CCS, LLC team: Technical risk mitigation analysis and techno-economic studies

Technology Fundamentals/Background

Hot Carbonate Absorption Process with High Pressure Stripping Enabled by Crystallization (Hot-CAP)

- Absorption into 30-40wt% potassium carbonate (PC) solution at 60-80°C
- Working capacity of PC: 15/20% to 40/50% carbonate-to-bicarbonate (CTB) conv.
- ☐ Crystallization at near room temperature (~30°C)
- Stripping of bicarbonate slurry at ≥10 atm

Major Reactions

$$CO_2$$
 absorption at $60-80^{\circ}C$:
 $CO_2 + H_2O + K_2CO_3 = 2KHCO_3$

$$CO_2$$
 desorption at $\geq 130^{\circ}C$:
 $KHCO_3 = CO_2(g) \uparrow + H_2O + K_2CO_3$

Crystallization at
$$30^{\circ}C$$
:
 $KHCO_3 = KHCO_3(s) \downarrow$

Advantages of Hot-CAP over Conventional MEA

Items	MEA	Hot-CAP
Solvent	30wt% MEA	30-40wt% K ₂ CO ₃
Solvent degradation	Υ	N
Corrosion	Υ	Less significant
Absorption temperature	40-50°C	60-80°C
Stripping temperature	120°C	130-200°C
Stripping pressure	1.5-2 atm	≥10 atm
Phase change bw absorb. and stripping	N	Crystallization
FGD required	Υ	N

- High stripping pressure
 - low compression work
 - low stripping heat (high CO₂/H₂O ratio)
- Low sensible heat
 - Comparable stripping working capacity to MEA
 - Lower Cp (60% of MEA)
- Low heat of absorption
 - ▶ 18 kcal/mol CO₂ (crystallization heat included) vs. 21 kcal/mol for MEA

Technical Risks/Challenges to Be Addressed

- A. Is overall rate of CO₂ absorption into PC comparable to 5M MEA?
- B. Can CO₂ stripping operate at high pressure (e.g. ≥10 bar)?
- C. Can fouling risk due to bicarbonate precipitation on surfaces of heat exchangers and crystallizer coolers be prevented?
- D. Is crystallization rate fast enough (e.g., residence time of <1 hr)?
- E. Can the stripper be designed to handle slurry while operating at high pressure?
- F. Can SO₂ removal be combined in Hot-CAP?

Progress and Current Status of Project

Project Major Tasks, Progress and Millstones Achieved

Project Tasks	Progress to date
Task 0. Project planning & management	In progress
 Task 1. Kinetics of CO₂ absorption Absorption with and w/o promoters Absorption column tests 	Completed (Supplementary tests (with Na ₂ CO ₃) in progress)
 Task 2. Crystallization kinetics & solubility of bicarbonate KHCO₃ crystallization tests NaHCO₃ crystallization tests 	Completed
 Task 3. Phase equilibrium & kinetics of high pressure CO₂ stripping VLE measurements Stripping column tests 	VLE completed; Column tests in progress
 Task 4. Reclamation of sulfate from SO₂ removal Semi-continuous reclamation tests Process modification/improvement 	Proof-of-concept tests completed; Tests on process improvement in progress
 Task 5. Techno-economic evaluation Risk mitigation analysis Process simulation Economic evaluation 	Risk analysis completed; Economic evaluation in progress

- ☐ Currently in 1st quarter of BP3
- 17 milestones in BP1 and BP2
 - > 16 milestones completed on schedule
 - 1 milestone extended for 3 months

(1) Studies of CO₂ Absorption:

Promoter Screening Tests Using a Stirred Tank Reactor (STR)

(PrC: pressure controller; TC: thermal couple; PG: pressure gauge; DAQ: data acquisition)

Screening tests using STR:

- 3 inorganic and 8 organic promoters
- 3 promoters selected for packed bed column testing

Time

CO₂ Absorption Column Tests: Experimental Setup

	Specification
Column height, m	10 ft
Packed bed height	7 ft
Absorber diameter, cm	4 in
Height of packing element	4 in
Diameter of packing element	4 in
Specific surface area	800 m ² /m ³
Void fraction (ε)	0.66

Column Tests Revealed More Favorable Rate of CO₂ Absorption into 40wt% PC + Promoter than 5M MEA

(70°C absorption in 40wt% PC and 50°C in 5M MEA; inlet CO₂=14 vol%, L/G=4.7 lb/lb) (30% CO₂ removal efficiency equivalent to ~11% increase in CTB thru the column)

- \square CO₂ removal by PC40+1M DEA or 0.5M PZ at 70°C > 5M MEA at 50°C
- □ W/o promoter, CO₂ removal efficiency by 40wt% PC was insignificant

(2) Studies of Bicarbonate Crystallization

A process configuration developed to address fouling risk and heat recovery:

- □ Conventional single-crystallizer design requires a large ∆T between inflow and outflow, undesirable for heat recovery
- Multiple crystallization tanks/modules developed with a vendor to reduce $\Delta T = \sim 5^{\circ}C$

17

Crystallization Tests in a Continuous Mixed Suspension-Mixed Product Removal (MSMPR) Reactor

- □ CO₂-rich feed solution:
 - Temperature: 70°C
 - Composition: K₂CO₃/KHCO₃ (PC40-40)
- Test conditions selected to simulate multiple-CSTR process
 - > 70-55°C
 - > 55-45°C
 - > 45-35°C
- Crystallization rate constants (nucleation and growth) determined

1-liter calorimetric CSTR (Syrris Atlas);

Crystal size distribution analysis (Horiba LA-950)

Morphology and Composition of Crystal Particles

XRD pattern of a typical kalicinite (KHCO₃) sample

SEM image of KHCO₃ crystal (end T=45 C)

- ☐ High-purity kalicinite (KHCO₃) prevailed in crystal phase
- Prism-shaped (hexagonal) morphology
- ☐ Yield of KHCO₃ crystals consistent to its solubility at crystallization T

Parametric Tests Indicated Fast Crystallization of KHCO₃

□ Crystal growth and nucleation rates measured at different agitation rates, mean residence times (MRT, 15, 30, 45 min) and T-dependent supersaturation levels (TSL, T=35, 45, 55°C)

Example 1: 70°C PC40-40 feed, crystallization at 55°C, 350 rpm

Example 2: 70°C PC40-40 feed, MRT=30min, 700 rpm

- Mean particle size of KHCO₃ crystals under test conditions: 233-455 μm
 - Crystal size large enough for ~100% liquid-solid separation in conventional hydrocyclone
 - ightharpoonup Crystallization time \leq 45 min is sufficient

(3) Studies of CO₂ Stripping: VLE measurement for K₂CO₃/KHCO₃ Slurry

1-liter Parr reactor (rated at 1,900 psi and 275 C)

- Gas analysis using GC and liquid analysis using a back-titration method
- 40-70wt% KHCO₃/K₂CO₃ slurry at 120-200°C

VLE Results Indicated that High Stripping Pressure is Thermodynamically Feasible in Hot-CAP

- ☐ High P_{total} and low P_{H2O}/P_{CO2} ratio attained
- Higher P_{total} and lower P_{H2O}/P_{CO2} ratio at higher temperature, CTB conversion, or PC concentration

CO₂ Stripping Experimental System

- Stripping column: 7 ft high x 1 in ID; 3 kW electrically heated reboiler
- Slurry supply tank: 10 gallon vol., 5 kW electrical heater
- □ Control panel and monitoring (T, P, rpm, flow rate, etc.)
- ☐ System rated at 200 °C and 500 psia

Initial Results Indicated Good Performance of CO₂ Stripping Even with Less Concentrated Feed Slurry

Temperature in reboiler (°C)	Rich solution*	Lean solution	Feed flow rate (LPM)	CO ₂ flow rate (ml/min)	P _{total} in column (psia)
140	PC40-40	PC40-33	0.1	660	39
160	PC40-40	PC40-20	0.1	2,022	81
160	PC30-60	PC30-54	0.1	270	89
140	PC32-80	PC32-55	0.1	1,900	69
170	PC32-80	PC32-48	0.1	2,435	97
180	PC50-60	PC50-48	0.1	1,700	108

^{*} PC X-Y stands for X wt% K₂CO₃-equivalent concentration and Y% carbonate-to-bicarbonate (CTB) conversion

- □ Initial results with relatively low concentration slurry (30-50 wt%) confirmed that high P_{total} and low P_{H2O}/P_{CO2} were possible
- □ Increasing feed CTB% conversion and reboiler temperature favored performance of CO₂ stripping
- Parametric tests in progress to investigate:
 - Effects of CTB% in feed, slurry concentration, stripping T, slurry flow rate, etc.

24

(4) Reclamation of Sulfate for SO₂ Removal in Hot-CAP: Process Proof-of-Concept Tests

SO₂ absorption into PC: $K_2CO_3 + SO_2 + 1/2O_2 = K_2SO_4 + CO_2$

K₂SO₄ reclamation process:

vaterite/calcite

- Reaction with lime: $K_2SO_4 + CaO + 2H_2O + CO_2 = K_2CO_3 + CaSO_4 \cdot 2H_2O(\downarrow)$
- ☐ Competitive reaction: $Ca^{2+} + CO_3^{2-} \Rightarrow CaCO_3(\downarrow)$

Inhibition by high-P CO₂: $CaCO_3(s) + CO_2 + H_2O = Ca(HCO_3)_2(aq)$

Semi-continuous experimental results :

- □ Precipitates: gypsum (0-58wt%), syngenite (0-91%), vaterite/calcite (0-100%)
- □ Precipitates from most tests contained >30%
- □ Precipitation of CaSO₄ favored over CaCO₃ at lower T or lower PC concentration

Example: XRD of precipitates from three PC-0.4M K₂SO₄-0.4M CaCl₂ systems.

A Modified Process Option for K₂SO₄ Reclamation

■ Major reactions:

Absorption: $2K_2CO_3 + SO_2 + H_2O \rightarrow K_2SO_3 + H_2CO_3$;

 $2KHCO_3 + SO_2 + H_2O \rightarrow K_2SO_3 + 2H_2CO_3$

Oxidation: $K_2SO_3 + \frac{1}{2}O_2 \rightarrow K_2SO_4$ (s) \downarrow

Reclamation: $K_2SO_4 + Ca(OH)_2 \rightarrow 2KOH + K_2SO_4$ (s)

□ Solubility:

 K_2SO_3 , K_2CO_3 , $KHCO_3 >> K_2SO_4$

☐ Tests of K₂SO₃ oxidation and K₂SO₄ precipitation in progress

(5) Techno-Economic Analysis: Process Simulation and Sizing of Columns Using ProTreat

☐ 773 MWe power plant (gross w/o CO₂ capture) equipped with Hot-CAP

Preliminary Results of Process Simulation and Sizing

Column sizing:

- 2 absorbers, each of 14.7-m ID x 25-m height
- □ 1 stripper, 7.3-m ID x 10-m height
- Packed with Mellapak M250.Y

Energy performance:

CO ₂ Stripping (kWh/ kg CO ₂)	0.155
Compression work (kWh/ kg CO ₂)	0.075
Other loads (kWh/ kg CO ₂)	0.04
Total electricity use (kWh/kg CO ₂)	0.27

Current simulation based on a low stripping P (2 bar) due to lack of data at T>140°C in ProTreat software

- □ Higher stripping P and better energy performance expected at T>140°C due to high adsorption + crystallization heat (~18 kcal/mol)
- High stripping-P scenarios (>>2 bar) will be simulated by incorporating measured VLE data into software

Plans for future testing/ development/ commercialization

Work Plan in BP3

- ☐ High pressure CO₂ stripping tests
 - Stripping performance tests
 - Stripping process optimization
- □ Proof-of-concept testing of a modified process option for combined SO₂ removal and CO₂ capture
- Techno-economic studies
 - Process optimization study
 - Equipment sizing and cost analysis

Technology Scale-up Development

- Process optimization and improvement to reduce technical risks and enhance performance
- Detailed techno-economic analysis
- If technically and economically viable,
 - Seek federal, state, and industrial support for a pilot-scale test (0.5-3 MWe)
 - Identify industrial partners (design, manufacturing and field testing) for pilot-scale demonstration

Acknowledgements

- U.S. Department of Energy/ National Energy Technology Laboratory under Agreement No. DE-FE0004360
- □ Illinois Department of Commerce and Economic Opportunity through the Office of Coal Development and the Illinois Clean Coal Institute under Project No. 11/US-6