

Advanced Solid Sorbents and Process Designs for Post-Combustion CO₂ Capture

RTI International

Luke Coleman, Atish Kataria, Marty Lail, Thomas Nelson, Jian-Ping Shen, Jak Tanthana

Pennsylvania State University

Eric Fillerup, Chunshan Song, Dongxiang Wang, Xiaoxing Wang

Award # DE-FE 0007707 July 8, 2013

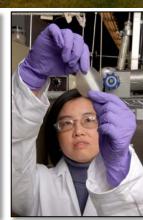
Copyright © 2013 RTI. All rights reserved.

RTI International is a trade name of Research Triangle Institute.

www.rti.org

RTI's Center for Energy Technology

•


۲

•

٠

RTI's Johnson Science and Engineering Building Home of RTI's Center for Energy Technology

knowledge into practice

CO₂ Capture & Utilization

Post-combustion CO₂ capture

Pre-combustion CO₂ capture

Advanced Gasification

Syngas cleanup/conditioning

Substitute natural gas

production

CO₂ utilization

Shale Gas

Biomass & Biofuels

Pyrolysis to biocrude and

Fuels & Chemicals

Hydrocarbon desulfurization

Biomass gasification

conventional fuels

Syngas conversion

ANG sorbents

- Gas separation & processing
- Process water treatment

RTI was established in 1958 in RTP, North Carolina

Mission: To improve the human condition by turning

CET develops advanced energy technologies to

address the world's energy challenges

One of the world's leading research institutes

Water & Energy

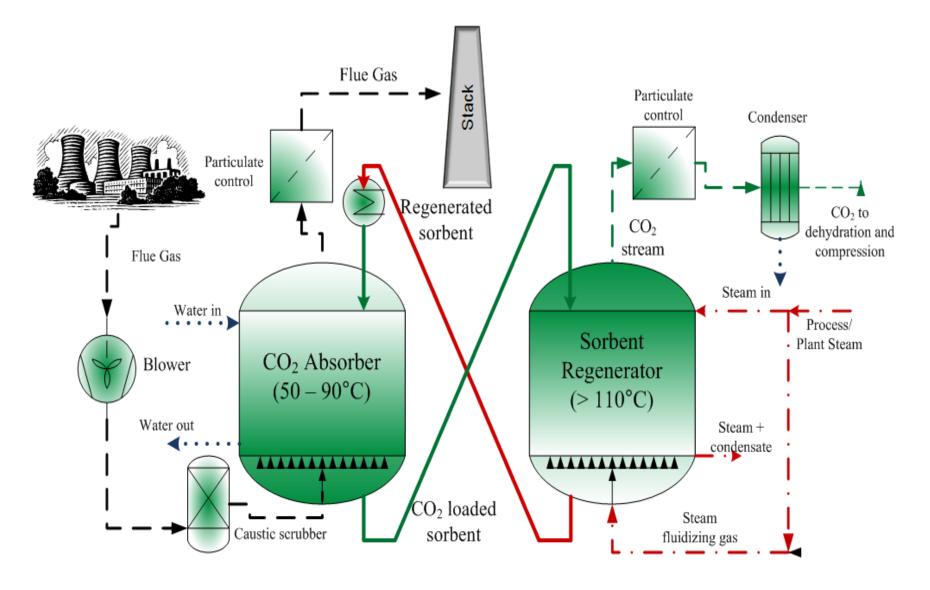
- Industrial water reuse
- Energy and waste heat recovery

Project Overview

Overall objective: Address the technical hurdles to developing a solid sorbent-based CO₂ capture process by transitioning a promising sorbent chemistry to a low-cost sorbent suitable for use in a fluidized-bed process

Project Details

- Combines previous technology development efforts – RTI (process) and PSU (sorbent)
- Project Cost: \$3,847,161
 - DOE Share: \$2,997,038
 - Cost Share: \$850,123
- Period of performance: 10/1/2011 to 6/30/2015


Project Objectives

- Improve stability, performance, and fluidizability of novel amine-based (PEI) "Molecular Basket Sorbents"
- Improve design of fluidized, moving-bed reactor; optimize operability and heat integration
- Prove that the technology reduces parasitic energy load and capital and operating costs associated with CO₂ capture (through prototype testing and economic analyses)

	PENN <u>State</u>		FOSTER	CLARIANT
 Project management Process design Fluidized-bed sorbent 	 PSU's EMS Energy Inst PEI and sorbent improvement 	 Masdar Carbon Masdar Institute NGCC application 	 Techno-economic evaluation Process design support 	 Sorbent scale-up Commercial manufacture evaluation

Solid Sorbent CO₂ Capture

Solid Sorbent CO₂ Capture

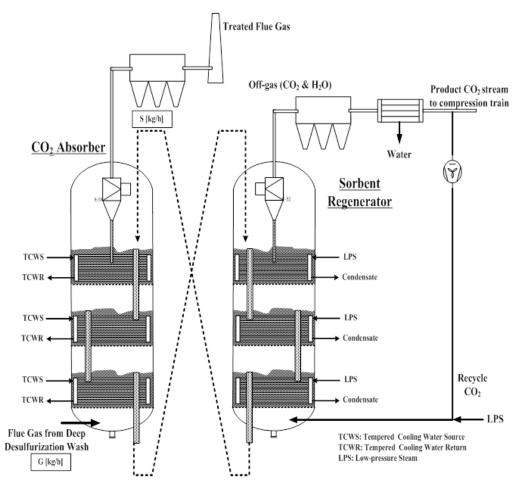
RTI solid CO₂ capture sorbents

Advantages

- Potential for reduced energy consumption compared to SOTA solvent processes
 - High CO₂ working capacity compared to solvents (higher active species concentration and utilization)
 - Reduced sensible heat load due to lower heat capacities
 - Steam stripping can be minimized
 - · Avoids evaporative emissions
- Potential for reduced capital costs through simplified process designs and inexpensive materials of construction

Challenges

- Developing a low-cost sorbent with high and stable working capacity suitable for fluidized-bed processes
- Effective heat management in absorption / regeneration
- Counter-current flow of gas and solids to achieve desired process operating window
- Pressure drop across sorbent bed



Fluidized-bed Process Arrangement

Conceptual Process Arrangement:

Circulating, Staged, Fluidized-bed Reactor with Internal Heat Management

Benefits

- Mimics conventional gas-liquid absorption processes
- Counter current gas-solids flow maximizes CO₂ driving force throughout reactor length
- · Bed staging effectively enables counter-current flow
- Superior gas-solid heat and mass transfer characteristics and heat management strategy minimize thermal regeneration energy
- Reduced pressure drop in fluidized state

Development Needs

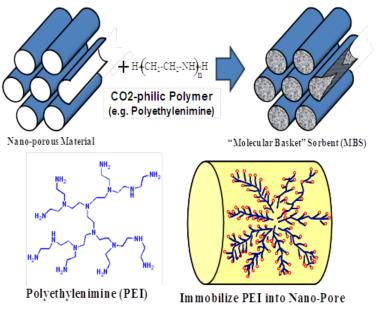
Optimize reactor design and process arrangement

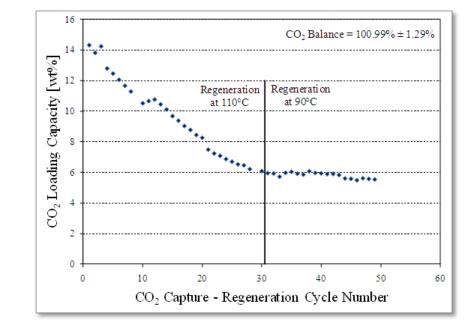
Development Approach

- Detailed fluidized bed reactor modeling
- Bench-scale evaluation of reactors designs
- Demonstration of process concept

Suitable CO₂ absorbent must:

- · be a fluidizable and attrition-resistant material
- achieve dynamic \mbox{CO}_2 loadings in excess of 8 wt%
- exhibit a heat of CO₂ absorption <80 kJ/mol of CO₂
- be inexpensive (target < \$10/kg)

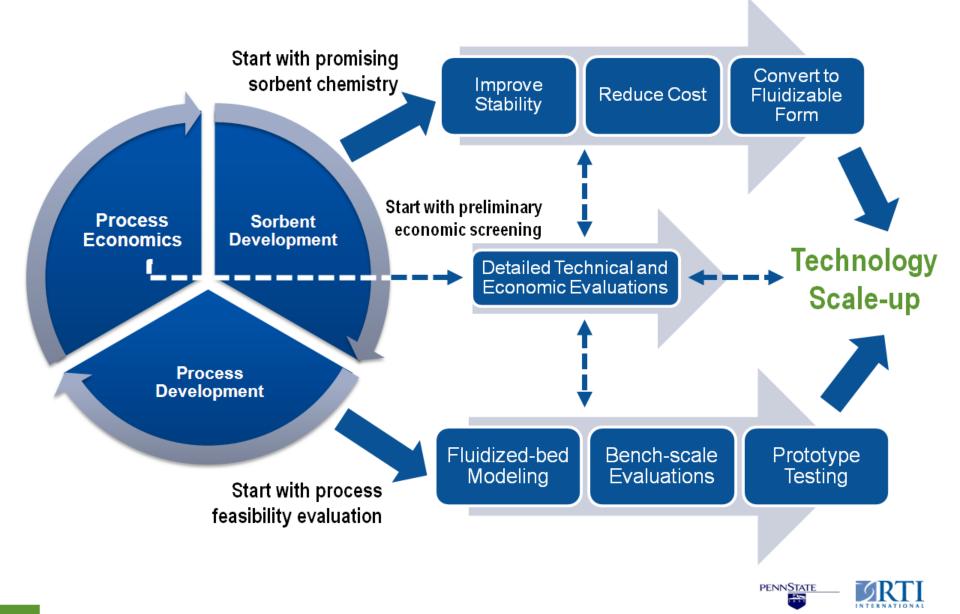



Polymeric Amine Sorbents

Dr. Chunshan Song's group (PSU) has contributed 10+ years of R&D and published data in field of polymeric amine CO₂ capture

PSU's Molecular Basket Sorbent (MBS) material offers very promising CO₂ absorption chemistry

- CO₂-philic polymer, polyethyleneimine (PEI), supported on high surface area materials (MCM-41, SBA-15, carbon)
- High CO₂ loadings (>14 wt% CO₂)
- Reasonable heat of absorption (66 kJ/mol)



Development Needs

- Improve stability at high temperatures is needed for optimal process performance
 - higher regeneration temperature \rightarrow increased working capacity and CO₂ pressure in product gas
 - PEI-based sorbents deactivate by several mechanisms which are exacerbated with increasing temperature
- Convert sorbent powder to low-cost, fluidizable, attritionresistant particle suitable for use in a fluidized-bed process

Technology Development Strategy

Project Schedule and Milestones

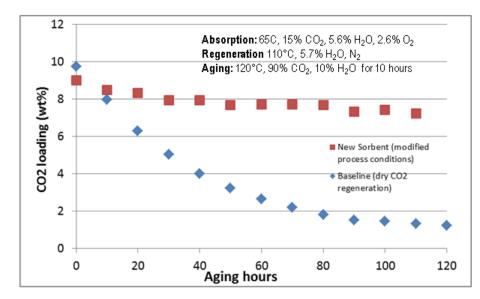
	Previous Work		Current Project		Future Development				
Yr	< 2011			2011-15		2015 - 17		2018-22	> 2022
TRL	1	2	3	4	5	6	7	8	9
Proof-of-Concept Feasibility Studies				介介介		Pilot Va • 1-5 M	lidation W (eq)	Demo • ~ 50 MW	Commercial
La	boratory (2011 –	Validatior 2013)			C			/pe Testing 4 – 2015)	
 <u>Economic analysis</u> <u>Milestone</u>: Favorable technology feasibility study <u>Sorbent development</u> <u>Milestone</u>: Successful scale-up of fluidized-bed MBS material <u>Process development</u> <u>Milestone</u>: Working multi-physics, CFD model of FMBR design <u>Milestone</u>: Fabrication-ready design and schedule for single-stage contactor 			of	(2013) <u>Process Develops</u> <u>Milestone</u>: Fully of FMBR unit capable desorption operation <u>Milestone</u>: Fabrica 	perational bench-scale e of absorption/	 Mile capa Mile para Upd Mile ecol 	estone: Oper able of 90%(estone: Com ametric and lo ated Econo estone: Favo nomic, enviro	pletion of 1,000 hou ong-term testing	irs of
			esign and	 FMBR prototype Sorbent Developi Milestone: Succession 	<u>nent</u> ssful scale-up of MBS mation of maintained	DOE	targets)		

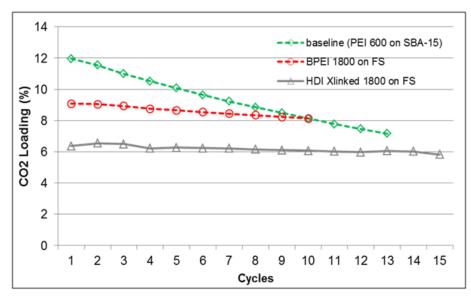
Sorbent Stability

Approach

Stability improvements through process modification

- Addition of moisture to the regeneration gas dramatically improves the multi-cycle performance stability
- Improvement most likely related to reducing the formation of thermally-stable urea under regeneration condition

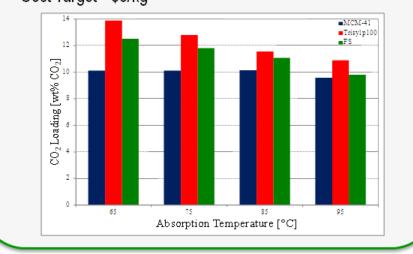

 $\mathsf{2RNH}_2 + \mathsf{CO}_2 \leftrightarrow \mathsf{RNH}\text{-}\mathsf{CO}\text{-}\mathsf{NHR} + \mathsf{H}_2\mathsf{O}$


Stability improvements through sorbent chemistry modifications

- Evaluation of various PEI types shows that linear PEIs exhibit better performance stability, but are too expensive
- Novel amine cross-linking / copolymerization / complexation pathways have good potential for stabilizing sorbent capacity
 - Cross-linking changes the physical properties of the polymer with respect to melting/glass transition temperature and water solubility

Progress

 Improved stability of PEI-based sorbent with >6.6 wt% CO₂ loading with regeneration temperature of 100 °C for > 25 cycles



Sorbent Cost and Form

Sorbent cost improvement

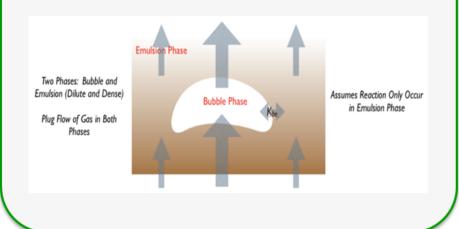
- <u>Approach</u>: Replace expensive mesoporous silicas with low-cost support materials and retain sorbent performance
- 25+ support materials screened. Suitable silica-based (low-cost, commercially-available) supports identified
- 1000x cost reduction over mesoporous silicas
- Additional cost reduction expected when raw materials produced at commercial scale
- Superior performance
- Cost Target <\$5/kg

Conversion to fluidizable form

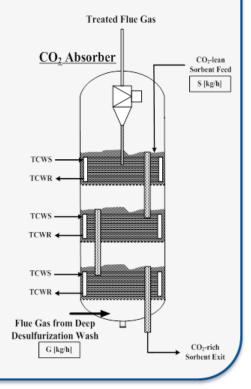
. . .

Silica powder

- Commercially-relevant strategies
 employed
- Converted support powders and PEI to fluidizable, attrition-resistant particles
- Prepared PEI-based sorbents with water replacement of methanol
- Spray drying with binders exhibited desired particle size distribution and densities
- •Two spray dried materials have targeted attrition indices



Process Development Progress


Fluidized-bed modeling

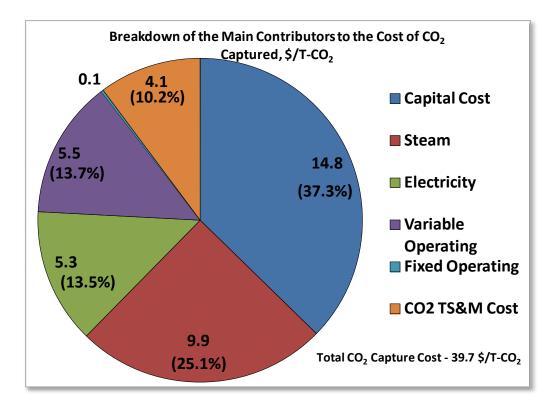
- Developed a fluidized bed reactor model to simulate the performance of conceptual fluidized-bed reactor configurations
- Characteristics: Gas-solid hydrodynamics; sorbent physical properties; heat transfer, temperature, pressure, concentration profile
- Use: Understand the effect of key process and sorbent parameters on the performance of the proposed FMBR designs
- Use: Optimize design of CO₂ Absorber and Sorbent Regenerator including heat transfer internals and bedstaging

Bench-scale process unit development

- Developed a detailed engineering design package of a bench-scale contactor evaluation unit
- Designed to evaluate the effectiveness of two proposed reactor designs for CO₂ removal from flue gas
- · Specifications:
 - Flue gas throughput: 300
 and 900 SLPM
 - Solids circulation rate: 75 to 450 kg/h
 - Sorbent inventory: ~100 kg of sorbent
- Adequately sized to avoid issues related to bed slugging

Technology Feasibility Study

Basis: DOE/NETL's Cost and Performance Baseline for Fossil Energy Plants Volume 1


Approach: Thorough T&E assessment using process modeling & cost estimation software

• Aspen Plus; Process Economic Analyzer; ProMax (caustic scrubbing simulation)

Summary

- Total cost of CO₂ captured estimated to be 39.7 \$/T-CO₂ (SOTA Amine Process ~68\$/T-CO₂)
- Total capture plant capital cost significantly lower compared to SOTA MEA process
- Further reductions in cost would come through reductions in both power consumption and capital cost

	•	Kinetic/equilibrium studies
R&D	•	Long-term contaminant studies
Directions	• Study effects of particle size	
	•	Detailed design study of FMBR

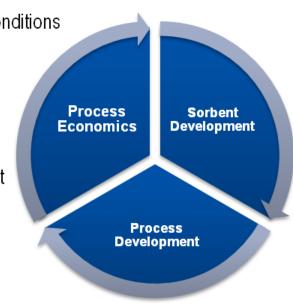
3 RTI technology exhibits favorable technical feasibility and process economics

Ongoing Work

Bench-scale contactor and prototype system testing

- Evaluate two proposed reactor designs for CO_2 removal from flue gas
- Demonstrate long-term stability of the sorbent and process equipment
- Demonstrate continuous operation of process under high-fidelity flue gas conditions
- Testing at RTI's Energy Technology Development Facility
- Parametric and long-term testing (1,000+ hours)
- Collect critical process data to perform detailed T&E assessment

Sorbent optimization and scale-up


- Integrate advancements in tethering PEI and physical property improvement
- Produce sorbent for bench-scale and prototype testing (500 kg scale)

Detailed technical and economic assessment

- Update economic analyses using bench- and prototype testing data
- Continue to show ability to achieve DOE/NETL programmatic goals

Application to other industrial sources of CO₂

- Demonstrating technology at cement plant in Norway Norcem (part of HeidelbergCement)
- Continue evaluating economic factors of NGCC application Masdar

RTI's ETDF

Energy Technology Development Facility

- Facility dedicated to hosting bench- and pilot-scale systems
- 60 ft x 50 ft x 45 ft tall enclosed structure
- Adjacent to RTI's existing research labs
- Equipped with:
 - flue gas generation system using a LPG-fired furnace
 - closed-circuit chilled water loop
 - steam generator
 - air compressor
 - adequate electrical supply for multiple systems
- Excellent facility for bench- scale testing of solid sorbent technology development

The R&D work presented herein was made possible through funding by:

- The U.S. DOE/National Energy Technology Laboratory
 - Project Award # DE-FE 0007707
- Masdar

DOE/NETL	RTI	Masdar	Masdar Institute	Clariant
Bruce LaniLynn BrickettShailesh Vora	Laura DouglasErnie JohnsonMartin LeeTony Perry	 Alexander Ritschel Paul Crooks Mayuram Balasubramanian Maitha Al Mansoori 	 Mohammad Abu Zahra Adel Seif El-Nasr Dang Viet Quang 	 Troy Walsh

