

Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture

July 8, 2013 ADA-ES, Inc. DE-FE0004343

Advanced Emissions Solutions, Inc.

CO₂ Project Funding and Goals

- The overall objective of this funding stage is to validate solid sorbent-based post combustion CO₂ capture through slipstream pilot testing.
- Project Goals:
 - Achieve 90% CO₂ Capture
 - Reduce costs of carbon capture
 Progress towards <35% LCOE Goal
 - Generate a high purity CO₂ stream
 - Successfully scale sorbents

\$15,000,000

\$5,500,000

Cooperative Agreement (Award No. DEFE0004343)

American Recovery and Reinvestment Act of 2009

Administered by DOE-NETL: Project Manager Bruce Lani

Project Budget Period Overview

Phase I: 18 months

- 500 MW Concept and Sorbent Selection
- Design 1 MW pilot

Scale down to 1 MW

Oct '10 - Mar '12

Manufacture and Construction

- Manufacture Sorbents
- Fabricate and Install 1 MW pilot

Phase III: 15 months

- 1 MW Testing
- Develop 500 MW Preliminary Design
- Conduct Technoeconomic analysis

Demonstration Phase

Phase II: 18 months

Apr '12 - Sep '13

Oct '13 - Dec '14

Project Team

• DOE - NETL

- o Project Sponsor
- ADA-ES, Inc.

- Project Management
- o Developed Process Concept
- Sorbent Eval & Selection
- Process Validation Testing
- o Techno-Economic Assessment
- Technip Stone and Webster **Process Technology**
 - Detailed Engineering Services Significant Experience with Fluidized Bed Reactor Design

Stantec Consulting, Ltd.

Owners Engineer Perspective

- McAbee Construction
 - Pilot fab and installation

- Technical Advisor
- o Cost Share
- o Independent Performance **Evaluation and Techno-**Economic Assessme
- Southern Company
 - o Host Site, Cost Share
- Luminant
 - o Cost Share

Fundamentals of Adsorption

- Solids functionalized with amines react with CO₂ at "low" temperatures
- Solids are heated to reverse reaction with CO₂
 - Temperature swing adsorption (TSA)

Sorbent Capacity for CO₂

ADAsorb™ Process Conceptual Design ADA

Advantages of Solid Sorbents

- Energy Penalty -Sensible heat* and latent heat of evaporation are lower
- Non-corrosive Less expensive materials of construction, no corrosion inhibitors required
- Low volatility Reduced emissions of amines
- Water savings Less cooling water required, minimal liquid waste, no process makeup requirements
- Process Flexibility and Operability
 - Can be applied to cycling plant "load following"
 - No risk of foaming or other solvent-related challenges
 - Reactions with SO₂ may be reversible

^{*}Heat recovery developed for liquid systems

ADAsorb™ CO₂ Capture Process

Advantages

- Heat transfer Isothermal operation
- Mass transfer favorable
- Proven at the industrial scale
- Approaches countercurrent gas/solids contacting

Challenges

- Pressure drop
- Solids circulation
- Sorbent attrition
- Water adsorption
- Heat recovery

Project Status

- Detailed characterization of sorbent
- 500 MW concept completed
- Design of 1 MW pilot completed

- Sorbent has been manufactured
- Detailed engineering of pilot completed
- Fabrication of pilot is underway

BP1 Pre-Engineering Activities - Examples

- CO₂ uptake
- → H₂O uptake
- Specific heat capacity
- $ightharpoonup \Delta H_{rxn}$
- Cyclic Stability
- Attrition
- Heat transfer coefficient
- Hydrodynamics

BP1: Lab Characterization - Results

Attrition Resistant

Slow kinetics for H₂O

Pilot Construction Activities

- Pilot designed in "modules"
- Off-site fabrication

ADA

Construction Status

- Engineering design complete
- Major procurement complete
- Module Fabrication
 Module Fabrication ~ 50% complete
- Site Preparation
 Steam Line 70% complete, foundation work started

Project Schedule Forecast

<u>Task</u>	<u>Date</u>
Modules Installed	Sept '13
Substantial Completion of Mechanical and Electrical Installation	Dec '13
Field Testing	2014

ADA

Process Validation Pilot Testing

- Host Site: Southern Company Alabama Power Co. Plant Miller
 - Flagship Plant
 - 4 EGUs (~2,640 MW_e)
 - PRB Coal
 - WFGD
- Pilot Designed for
 - 90% CO₂ Capture
 - $\sim 2,100 \text{ lb CO}_2/\text{hr}$
 - Flue Gas Flow Rate
 ~ 3,500 ACFM

Barge Access Area at Miller

ADA

Module Arrival and Routing

1 MW Pilot Location

1 MW Pilot Location

Upcoming Activities

- Complete construction, installation, and startup of pilot
- Operate 1 MW_e pilot continuously for 60 days
- Use data from 1 MW_e pilot to update 500 MW design and complete a techno-economic analysis
- Provide a roadmap of future technology improvements based on sorbents and process

Key Areas for Improvement

- ProcessHeat RecoveryHeat Integration
- Sorbent Fast Kinetics

- Use pilot to evaluate process improvements
- Use pilot to test advanced sorbents
- Scale-up technology

Larger CO₂ Working Capacities
Higher Heat Transfer Coefficient
Improved Heat Tolerance
Lower Specific Heat Capacity
Lower Water Uptake
Lower Cost (including replacement)

Questions?

Sharon Sjostrom Chief Technology Officer sharons@adaes.com