# Development of a Novel Gas Pressurized Stripping (GPS)-Based Technology for CO<sub>2</sub> Capture from Post-Combustion Flue Gases DE-FE0007567

Carbon Capture Scientific, LLC.

CONSOL Energy Inc.

Nexant Inc.

Western Kentucky University

HiGee USA Inc.

Presented by Shiaoguo (Scott) Chen

DOE Carbon Capture Technology Meeting, July 8-11, 2013, Pittsburgh, PA





# **Acknowledgements**

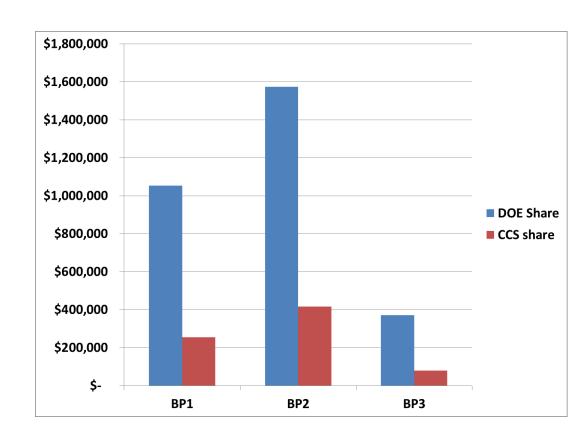
# Funded by U.S. Department of Energy/ National Energy Technology Laboratory under Agreement No. DE-FE0007657

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



### **About Carbon Capture Scientific, LLC**

- Early stage company located in Pittsburgh, PA
- Two patent granted/pending CO<sub>2</sub> capture technologies
- Bench-scale development funded by the Department of Energy /
   National Energy Technology Laboratory
- Chemical Engineers/Scientists with strong expertise in process design, simulation and optimization
- ☐ Technology development based on transition from thermodynamic analysis, to process simulation, to bench scale prototyping
- Continuing to make key hires to build in-house expertise for current and future large scale projects




# **Project Budget (Revised)**

|       | Budget, \$ |
|-------|------------|
| DOE   | 2,999,756  |
| ccs   | 751,178*   |
| Total | 3,750,934  |

\*including cost share from CONSOL Energy Western Kentucky University, and HiGee USA

(Cost share is ~20%)



DOE funding and cost share on a yearly basis



### **Project Team and Focus (Revised)**

#### **DOE/NETL**

Andrew Jones, NETL project manager

#### **Carbon Capture Scientific, LLC**

- Computer simulation to optimize GPS based process for existing power plants
- Bench-scale experiments to obtain process design data for GPS based process

#### **CONSOL Energy Inc.**

➤ Work with CCS to acquire phase equilibrium and related process design data **Nexant Inc.** 

Conduct techno-economic analyses for the GPS based technology

#### Western Kentucky University (WKU)

Consult on thermal and oxidative properties; Corrosion effects and physical property measurements

#### **HiGee USA**

Commercial source for low cost capital equipment (Rotating Packed Bed)



# Exceptionally Rapid Progress: Milestones Achieved On or Ahead of Schedule

- ☐ GPS column study and optimization demonstrates thermal efficiency of 60% or greater (BP1)
- □ Solvent loss due to degradation of solvent less than 3 kg/ton CO<sub>2</sub> (BP1)
- □ Overall energy performance column and solvent less than or equal to 0.22 kwh/kg CO<sub>2</sub>(BP2)
- ☐ GPS column efficiency experimental measured at 50% or greater (BP2)
- □ Overall energy performance of system less than or equal to 0.20 kwh/kgCO<sub>2</sub>(BP3)
- ☐ Increase in capital equipment costs of less than or equal to 20% over existing process(BP3)



### Rapid Progress Results in Revisions to Team and Work Plan

- ☐ Commercial Rotating Packed Bed (RPB) equipment offers promise of significant reduction in capital costs
- Added RPB supplier (HiGee USA) to team and began evaluation of RPB in laboratory
- ☐ Conducted lab scale RPB experiments to provide design data for the skid mounted system
- Results in two possible equipment solutions: traditional column-based GPS system and RPB-based system
- ☐ Constructing a skid mounted system for testing of column-based and RPB-based GPS systems
- □ Plan to test above systems at NCCC with coal-derived flue gas stream



# Revised Project Objectives Focus on NCCC Testing and Alternatives to Reduce Capital Costs

- ☐ Test individual process units at the bench-scale in order to document experimental results and prepare for transition to pilot scale
- ☐ Perform computer simulations to maximize the benefit of the GPS technology for existing power plants
- ☐ Use commercial solvents in evaluation of GPS system in order to minimize the economic risk of the proposed technology
- ☐ Perform bench-scale testing of a rotating packed bed (RPB) system in order to reduce capital costs of GPS
- □ Design, build, and operate a bench-scale skid system to evaluate both conventional column-based GPS and RPB-based GPS systems at the National Carbon Capture Center (NCCC).





# Revised Project Schedule: Oct.1, 2011 – Sept.30, 2014

| Tasks                                                                              |  |           |   | Ta | sk D | ura       | tion | 1 |           |           |            | T. 1 F.   |     | Pe    | erforme | er     |     |
|------------------------------------------------------------------------------------|--|-----------|---|----|------|-----------|------|---|-----------|-----------|------------|-----------|-----|-------|---------|--------|-----|
|                                                                                    |  | 1-1<br>BP |   |    |      | -24<br>P2 |      |   | 24-<br>Bl | -36<br>P3 | Task Focus |           | ccs | HiGee | CONSOL  | Nexant | wĸu |
| Task 1. Project planning & management                                              |  |           |   |    |      |           |      |   |           |           |            | N/A       | Х   |       |         |        |     |
| Task 2. GPS column study and its optimization                                      |  |           | A |    |      |           |      |   |           |           |            | Process   | Х   |       |         |        |     |
| Task 3. Optimization of GPS process for existing plant                             |  |           |   |    | С    |           |      |   |           |           |            | Process   | Х   |       |         |        |     |
| <b>Task 4.</b> Simulations of Alternative Separations method for GPS stripping gas |  |           |   |    |      |           |      |   |           |           |            | Process   | Х   |       |         |        |     |
| Task 5. Phase equilibrium data measurement                                         |  |           |   |    |      |           |      |   |           |           |            | Solvent   | Х   |       | Х       |        |     |
| Task 6. First absorption column testing                                            |  | Т         |   |    |      |           |      |   |           |           |            | Process   | Х   |       | х       |        |     |
| <b>Task 7.</b> GPS column design/fabrication and testing                           |  |           |   |    | D    |           |      |   |           |           |            | Process   | Х   |       | х       |        |     |
| Task 8. Second absorption column testing                                           |  |           |   |    | E    |           |      |   |           |           |            | Process   | Х   |       | х       |        |     |
| <b>Task 9.</b> Stability of solvent at high loading and high T                     |  |           | В | ;  |      |           |      |   |           |           |            | Solvent   | Х   |       |         |        | х   |
| <b>Task 10.</b> Corrosion test at high loading and high T                          |  |           |   |    |      |           |      |   |           |           |            | Solvent   | X   |       |         |        | х   |
| <b>Task 11.</b> RPB unit evaluation at CCS Laboratories                            |  |           |   |    |      |           |      |   |           |           |            | Equipment | X   | X     | х       |        | х   |
| Task 12. Survey of EH&S of GPS process                                             |  |           |   |    |      |           |      |   |           |           |            | Solvent   | X   |       |         |        |     |
| Task 13. Preliminary techno-economic analysis                                      |  |           |   |    |      |           |      |   |           |           |            | Economics |     |       |         | Х      |     |
| Task 14. Revision of techno-economic analysis                                      |  |           |   |    | F    |           |      |   |           |           |            | Economics |     |       |         | Х      |     |
| Task 15. Updated techno-economic analysis                                          |  |           |   |    |      |           |      |   |           |           |            | Economics |     |       |         | Х      |     |
| <b>Task 16.</b> GPS system design/fabrication and testing                          |  |           |   |    |      |           |      |   |           |           |            | Process   | X   | Х     |         |        |     |
| Task 17. RPB based GPS system                                                      |  |           |   |    |      |           |      |   |           |           |            | Equipment | Х   | X     |         |        |     |

# **Revised Milestones for BP2**

| Task<br># | Description                                                                                 | Planned<br>Completion Date | Comments         |
|-----------|---------------------------------------------------------------------------------------------|----------------------------|------------------|
| 16        | Complete design of bench-scale<br>GPS test unit for conventional and<br>RPB-based operation | 4/30/2013                  | Completed        |
| 1         | Host site agreement executed                                                                | 6/30/2013                  | Completed        |
| 16        | Complete shakedown testing of the column-based GPS bench unit on simulated flue gas         | 6/30/2013                  | Slightly Delayed |
| 11        | Delivery of enhanced bench-scale<br>RPB-based absorption and<br>stripping units to CCS LLC  | 7/31/2013                  | On Track         |
| 16        | Complete installation of 500 SLPM column-based GPS bench unit at NCCC                       | 7/31/2013                  | On Track         |
| 16        | Complete bench unit start-up and demonstrate plant operation at steady state                | 8/31/2013                  | On Track         |



# **BP1 Tasks: All Completed on Schedule**

| Task # | Description                                     | Simulation /<br>Experiment | Comments  |
|--------|-------------------------------------------------|----------------------------|-----------|
| 2      | GPS column study and its optimization           | Simulation                 | Completed |
| 5      | Phase equilibrium data measurement              | Experiment                 | Completed |
| 6      | First absorption column testing                 | Experiment                 | Completed |
| 9      | Stability of solvent at high loading and high T | Experiment                 | Completed |
| 13     | Preliminary techno-<br>economic analysis        | Simulation                 | Completed |



# **BP2 Tasks: Rapid Progress Results in Revisions**

| Task<br># | Description                                                | Simulation /<br>Experiment | Comments                 |
|-----------|------------------------------------------------------------|----------------------------|--------------------------|
| 3         | Optimization of GPS process for existing plant             | Simulation                 | Completed                |
| 4         | Simulation of alternative separation for GPS stripping gas | Simulation                 | Completed                |
| 7         | GPS column design/ fabrication and testing                 | Experiment                 | Completed                |
| 8         | Second absorption column testing                           | Experiment                 | Completed                |
| 10        | Corrosion test at high loading and high T                  | Experiment                 | In process / on schedule |
| 11*       | RPB unit evaluation at CCS Laboratories                    | Experiment                 | In process / on schedule |
| 14        | Revision of techno-economic analysis                       | Simulation                 | In process / on schedule |
| 16*       | GPS system design/ fabrication and testing                 | Experiment                 | In process / on schedule |



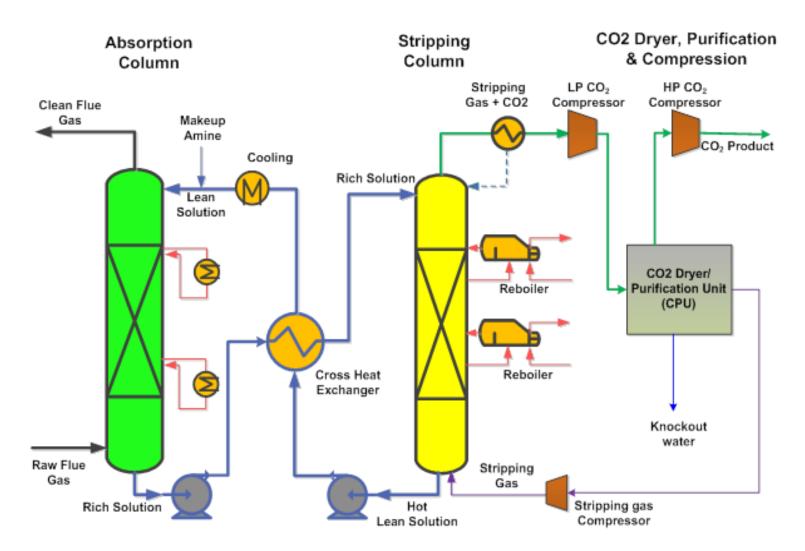


<sup>\*</sup> Revised or new task for BP2

# Task 3: Overall Energy Performance of Column and Solvent ≤ 0.22 kwh/kg CO<sub>2</sub>

#### Overall energy performance of the GPS process:

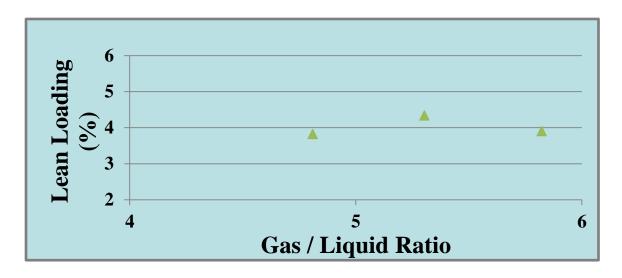
| Capture percentage, %                                             | 90.20  |
|-------------------------------------------------------------------|--------|
| Product flow rate, kmol/hr                                        | 13,112 |
| Product pressure, bar                                             | 153    |
| Heat requirement (electricity equivalent), kWh/kg CO <sub>2</sub> | 0.131  |
| Electricity need, kWh/kg CO <sub>2</sub>                          | 0.065  |
| Overall energy performance, kWh/kg CO <sub>2</sub>                | 0.196  |


#### CO<sub>2</sub> Specifications for GPS based CO<sub>2</sub> capture process:

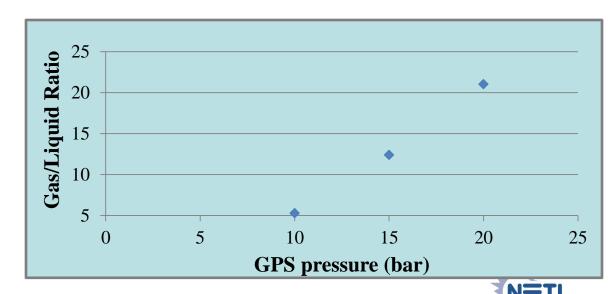
| Product compositions: | %mol  |
|-----------------------|-------|
| CO <sub>2</sub>       | 97.63 |
| H <sub>2</sub> O      | 0.24  |
| $\bar{N}_2$           | 2.13  |

Achieved milestone of energy performance column and solvent ≤ 0.22 kwh/kgCO₂




# Task 4. Simulations of Alternative Separations method for GPS stripping gas






# Task 7: GPS Column Design/ Fabrication and Testing





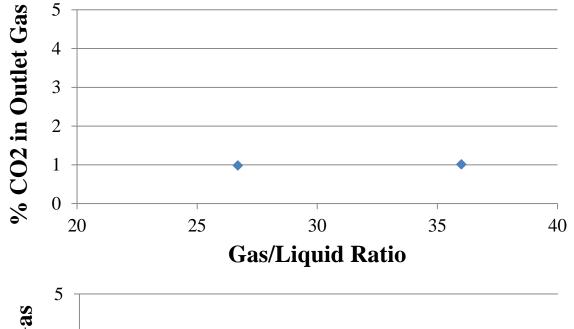


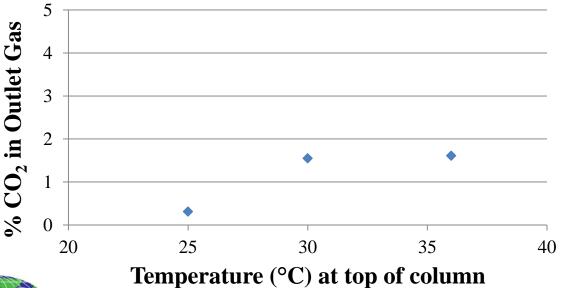


# Task 7: GPS Column Thermal Study/Milestone

| Run                                         | 1    | 2    | 3     | 4     | 5    | 6    |
|---------------------------------------------|------|------|-------|-------|------|------|
| liquid flow rate (g/min)                    | 74.4 | 65.5 | 115   | 115   | 110  | 110  |
| Heat GPS (W)                                | 93.9 | 83   | 154.9 | 192.7 | 137  | 146  |
| Sensible Heat (W)                           | 29.0 | 25.5 | 64.1  | 96.1  | 48.9 | 73.5 |
| Reaction + Stripping (W)                    | 64.9 | 57.5 | 90.8  | 96.6  | 88.0 | 72.5 |
| Equivalent Reaction + Stripping (KJ/Kg CO2) | 1377 | 1386 | 1248  | 1327  | 1266 | 1042 |
| Theoretical Minimum                         | 818  |      |       |       |      |      |

$$\Delta H_{min} = R \frac{T_2 T_1}{T_2 - T_1} \ln \left( \frac{P_2}{P_1} \right)$$


$$\frac{\Delta H_{min}}{\Delta H_{exp}} = \frac{818 \text{ kJ/kg} \text{CO}_2}{1274 \text{ kJ/kg} \text{CO}_2} = 64\%$$


Experimentally observed GPS operations achieving a thermal efficiency of 64% (milestone of 50%)





# **Task 8: Second Absorption Column Testing**



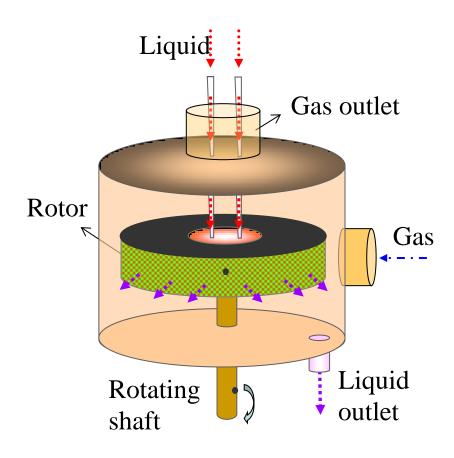


Second absorption can easily achieve  $CO_2$  concentration required for the GPS operations (much less than 10%  $CO_2$ )

- Simulation studies show that 2<sup>nd</sup> adsorption column can be replaced with a compound of compression and refrigeration processes
- Compound compression and refrigeration process improves energy efficiency, while still maintaining high purity CO<sub>2</sub> product.



# **Task 10: Corrosion Testing**


$$k = \frac{weight\ lost}{surface\ area*density*exposure\ time}$$

|                    | CCS Solvent  |       |       |                 |       |       |       |       |              |       |  |            |  |
|--------------------|--------------|-------|-------|-----------------|-------|-------|-------|-------|--------------|-------|--|------------|--|
|                    | Rich solvent |       |       | Rich solvent Le |       |       |       |       | Lean solvent |       |  | Lean Swith |  |
|                    | 20 C         | 50 C  | 80 C  | 20 C            | 50 C  | 80 C  | 100 C | 110 C | 20 C         | 50 C  |  |            |  |
| Stainless<br>304L  | 0.032        | 0.044 | 0.08  | 0.031           | 0.097 | 0.058 | 0.306 | 0.961 | 0.011        | 0.048 |  |            |  |
| Stainless<br>316 L | 0.109        | 0.025 | 0.254 | 0.013           | 0.046 | 0.072 | 0.279 | 0.84  | 0.053        | 0.057 |  |            |  |
| Carbon<br>Steel    | 0.024        | 0.035 | 0.114 | 0.033           | 0.035 | 0.27  | 0.363 | 1.23  | 0.035        | 0.197 |  |            |  |

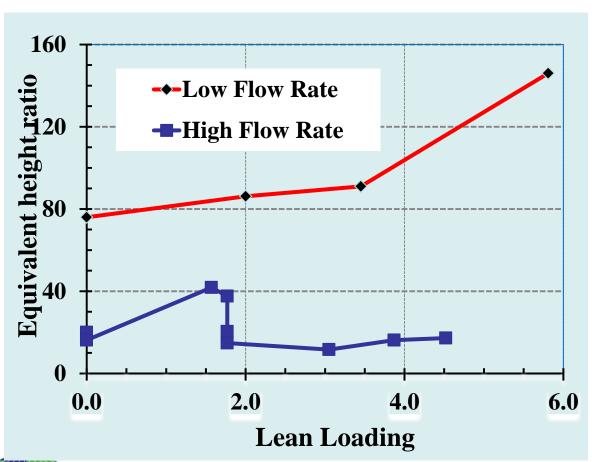


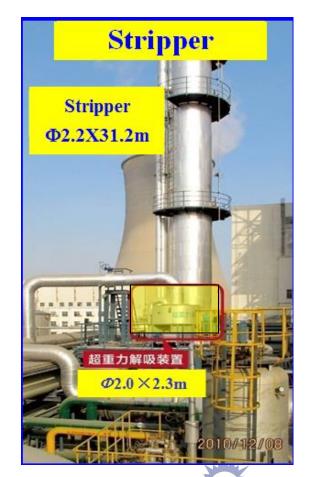
# Task 11. Rotating Packed Bed (RPB) Unit Evaluation

#### **Schematic of RPB**



#### **Commercial RPB**






#### Task 11. RPB Unit Evaluation at CCS Laboratories

# Equivalent Height Ratio= Equivalent Column packing height/RPB packing height

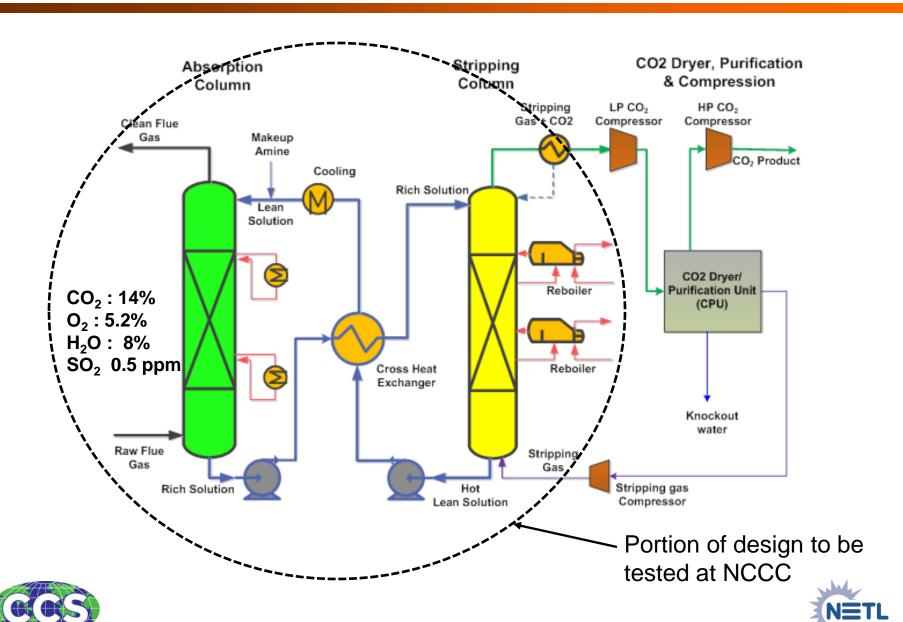






# Task 14. Revision of Techno-economic Analysis

|                                                 | Baseline Case 12 | GPS 20% Recycle | GPS/Refrigeration |
|-------------------------------------------------|------------------|-----------------|-------------------|
| Total Output at Generator Terminals, kW         | 663,445          | 753,660         | 761,644           |
| Auxiliary Load Summary, kW:                     | ,                | •               | ·                 |
| Coal Handling and Conveying                     | 490              | 490             | 490               |
| Limestone Handling & Reagent Preparation        | 1,270            | 1,270           | 1,270             |
| Pulverizers                                     | 3,990            | 3,990           | 3,990             |
| Ash Handling                                    | 760              | 760             | 760               |
| Primary Air Fans                                | 1,870            | 1,870           | 1,870             |
| Forced Draft Fans                               | 2,380            | 2,380           | 2,380             |
| Induced Draft Fans                              | 10,120           | 10,120          | 10,120            |
| SCR                                             | 70               | 70              | 70                |
| Baghouse                                        | 100              | 100             | 100               |
| FGD Pumps and Agitators                         | 4,250            | 4,250           | 4,250             |
| Misc Balance of Plant                           | 2,000            | 2,000           | 2,000             |
| Steam Turbine Auxiliaries                       | 400              | 400             | 400               |
| Condensate Pumps                                | 630              | 630             | 630               |
| Cooling Water Circulation Pumps **              | 12,260           | 15,476          | 15,476            |
| Cooling Tower Fans                              | 6,340            | 4,459           | 4,459             |
| Transformer Losses                              | 2,300            | 2,613           | 2,613             |
| Amine CO <sub>2</sub> Capture Plant Auxiliaries | 21,320           | 22,243          | 22,568            |
| CO <sub>2</sub> Compression                     | 46,900           | 33,828          | 34,100*           |
| Total Auxiliaries, kW                           | 117,450          | 106,949         | 107,546           |
| Net Power Export, kW                            | 545,995          | 646,711         | 654,098           |
| Net Plant Efficiency, % HHV                     | 27.2             | 32.2            | 32.6              |
| Net Plant Heat Rate, Btu/kW                     | 12,536           | 10,584          | 10,464            |






# Task 14. Revision of Techno-economic Analysis

| Туре | e of CO <sub>2</sub> Capture Technology | Case 11<br>(No Capture) | Case 12<br>(MEA Baseline) | GPS with 20%<br>Recycle | GPS<br>Refrigeration |
|------|-----------------------------------------|-------------------------|---------------------------|-------------------------|----------------------|
| Pow  | er Production, MW                       | (No Capture)            | (WILA Dasellile)          | Necycle                 | Kenigeration         |
|      | Gross Power                             | 580                     | 663                       | 754                     | 762                  |
|      | Net Power                               | 550                     | 546                       | 647                     | 654                  |
| Ca   | oital Cost, \$MM                        |                         |                           |                         |                      |
|      | Power Plant                             | 866.4                   | 1109.9                    | 1123.7                  | 1123.7               |
|      | PCC Plant                               | 0.0                     | 410.8                     | 470.9                   | 447.5                |
|      | CO2 Compression and Drying              | 0.0                     | 46.4                      | 55.0                    | 75.8                 |
|      | Start Up Costs (2% TPC)                 | 15.5                    | 26.4                      | 27.6                    | 27.7                 |
|      | Total Capital Cost, \$MM                | 881.9                   | 1,593.5                   | 1,677.3                 | 1674.7               |
| Ор   | erating Cost excl Fuel, \$MM/yr         |                         |                           |                         |                      |
|      | Fixed Operating Cost                    | 13.8                    | 20.5                      | 22.9                    | 22.9                 |
|      | Variable Operating Cost                 |                         |                           |                         |                      |
|      | Non PCC related Opt Cost                | 20.0                    | 33.6                      | 35.6                    | 35.6                 |
|      | NaOH                                    |                         | 0.9                       | 0.9                     | 0.9                  |
|      | H2SO4                                   |                         | 0.3                       | 0.3                     | 0.3                  |
|      | Amine M/U                               |                         | 1.0                       | 1.1                     | 1.1                  |
|      | Active Carbon                           |                         | 0.6                       | 0.5                     | 0.5                  |
|      | Corrosion Inhibitor/Solvent MU          |                         | 0.0                       | 0.0                     | 0.0                  |
|      | Total Operating Cost excl Fuel, \$MM/yr | 33.8                    | 56.9                      | 61.3                    | 61.3                 |
| Fu   | el Cost, \$MM/yr                        | 64.5                    | 92.0                      | 92.0                    | 92.0                 |
| LC   | DE (excl CO2 TS&M), mills/kWh           | 63.9                    | 112.0                     | 98.7                    | 97.6                 |
|      | of Case 11 LCOE - Compare to 2007       | 100%                    | 175%                      | 154%                    | 153%                 |

# Task 16. GPS System Design/Fabrication and Testing



# **Summary of Progress**

- ☐ Project ahead of original schedule
- □ Key energy related milestones achieved demonstrates improvements over existing capture technologies
- Rapid progress resulted in revising work plan and budget in order to add testing at NCCC
- □ Additional lower cost capital equipment alternative added – Rotating Packed Bed (RPB)
- ☐ Progress of revised project on schedule



### **Future Work**

- BP2: Perform parametric testing of column-based GPS system at NCCC
- BP3: Perform parametric testing of RPB-based GPS system at NCCC

| Task | Description                      | Simulation / Experiment |
|------|----------------------------------|-------------------------|
| 12   | Survey of EH&S of GPS process    | Documentation           |
| 15   | Updated techno-economic analysis | Simulation              |
| 17   | RPB based GPS system             | Experiment              |

### □ Prepare for Pilot Scale Tests

- Process design data for GPS based technology
  - Column Based
  - RPB based



