

Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS[™])

NETL CO₂ Capture Technology Meeting Pittsburgh, Pennsylvania July 8-11, 2013

Steve Benson, Dan Laudal, Nicholas Lentz, Kirtipal Barse & Harry Feilen University of North Dakota – Institute for Energy Studies

> Srivats Srinivasachar Envergex LLC

Project Overview

- Project Overview
- Technology Fundamentals
- Progress and Current Status
- Significant Accomplishments
- Plans for Future Testing

Presentation Overview

- Project Funding
 - U.S. Department of Energy Carbon Dioxide Capture RD&D program
 - Bench-scale testing
 - October 2011 to September 2014
 - Initial concept testing conducted by Envergex and UND under DOE STTR program
- Total Project Funding: \$3,690,000
 - DOE Share: \$2,952,000
 - Cost Share: \$738,000

Project Participants

- US Department of Energy NETL
- UND Institute for Energy Studies
- Envergex LLC
- Lignite Energy Council/NDIC
- ALLETE Group
 - Minnesota Power
 - BNI Coal
- SaskPower
- Barr Engineering
- Solex Thermal Science

Project Objectives

- Overall Project Objectives
 - Improve current state-of-the-art (amine scrubbing) by developing a novel sorbent-based, post-combustion CO₂ capture technology
 - Achieve at least 90% CO₂ removal from coal combustion flue gas
 - Demonstrate progress toward DOE target of less that 35% increase in levelized cost of electricity (LCOE) for plant with CO₂ capture
 - Demonstrate at bench-scale level a sorbent-based technology for capture of CO₂ by hybrid sorption (CACHYS[™]) from coal combustion flue gas
 - Develop key information on sorbent and technology effectiveness
 - Energy Requirements
 - Physical Properties
 - Process Integration
 - Equipment sizing, capital and operating costs

Technology Background and Fundamentals

CACHYS™ Hybrid Sorption Process

- Key component metal carbonate salt
- Reacts with CO₂ to form adduct. Reversible with heat addition
- Additive/process conditions enhance adsorption kinetics + reduce adsorption/regeneration energy

CACHYS[™] Process Advantages

<u>Advantages</u>

- ✓ Low reaction heat ~ 40-80 kJ/mol CO₂ (novel chemistry and process conditions)
- ✓ High sorbent capacity (> 7 g CO₂/100 gm sorbent)
- Increased sorption kinetics (smallersized equipment)
- Use of low cost, abundantly available materials for sorbent
- ✓ Use of commercially-demonstrated equipment design/configuration
- $\checkmark\,$ Reduced capital and operating costs

ENERGY STUDIES

CACHYS[™] Process Challenges

- Challenges
 - Confirmation of energetics
 - Confirmation of sorbent capacity
 - Confirmation of reaction kinetics
 - Sorbent integrity
 - Sorbent handling

Progress and Current Status

Technical Approach and Project Scope

Scope of work includes eight main tasks

Task 1: Project Management and Planning

Task 2: Initial Technology and Economic Feasibility Study

Task 3: Determination of Hybrid Sorbent Performance Metrics

Task 4: Bench-Scale Process Design

Task 5: Bench-Scale Process Procurement and Construction

Task 6: Initial Operation of the Bench-Scale Unit

Task 7: Bench-Scale Process Testing

Task 8: Final Process Assessment

Milestone Log – Budget Period 1

ID	Task	Title/Description	Planned Completion Date	Actual Completion Date	Verification Method
а	1	Submit Project Management Plan	10/31/2011	10/28/2011	Project Management Plan file
b	1	Complete Kick-off Meeting	11/21/2011	11/21/2011	Briefing Document & Meeting Results
с	2	Complete Preliminary Technical and Economic Feasibility Study	8/15/2012	8/15/2012	Topical Report file
d	3	Complete thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) testing of 5 sorbent formulations	7/31/2012	7/31/2012	Results reported in the quarterly report
e	3	Down-select to two optimal sorbent formulations for fixed-bed testing	8/15/2012	8/15/2012	Results reported in the quarterly report
f	3	Complete fixed-bed testing of the CACHYS™ process with two optimal sorbent formulations	9/30/2012	9/30/2012	Results reported in the quarterly report
g	3	Determine the optimal process operating conditions of the adsorber and regenerator units, for low energy operation	9/30/2012	9/30/2012	Results reported in the quarterly report

Milestone Log – Budget Period 2

ID	Task	Title/Description	Planned Completion Date	Actual Completion Date	Verification Method
h	4	Complete bench-scale unit column design utilizing a refined mass and energy balance of the CACHYS™ process	12/31/2012	12/17/2012	Results reported in the quarterly report
i	5	Bench-scale unit engineering design package released for bid	1/15/2013	12/31/2012	Bid package is submitted to system integrator/fabricator and submitted to NETL for record
j	5	Complete bench-scale unit construction	7/30/2013		Results reported in the quarterly report
k	6	Complete shakedown testing of the flue gas sampling and conditioning system, as well as the adsorber and regenerator	9/15/2013		Results reported in the quarterly report
I	6	Submit a test matrix for the bench-scale parametric test campaign	9/30/2013		Results reported in the quarterly report

Decision Point		Basis for Decision/Success Criteria
	1.	Successful completion of all work proposed in Budget Period 1
Completion	2.	Demonstrate sorbent CO_2 equilibrium capacity of greater than 70 g of CO_2 /kg of sorbent - CACHYS TM sorbents have capacities that range from 70 to 100 g CO_2 /kg sorbent.
Budget Period 1 Year 1	3.	Demonstrate a heat of sorption of 80 kJ/mole of CO ₂ or less - Sorption energies ranged from 30 to 80 kJ/mole of CO ₂
	4.	Submission of a Topical Report – Preliminary Technical and Economic Feasibility Study - Completed; Revised report uploaded
	5.	Submission/approval of a Continuation Application to DOE – Continuing application approved

Decision Points & Success Criteria

Decision Point	Basis for Decision/Success Criteria
	1. Successful completion of all work proposed in Budget Period 2.
Completion	 Submission of a bench-scale engineering design package - CACHYS™ bench-scale system design submitted and approved
Budget Period 2 Year 2	3. Complete construction of a bench-scale CACHYS [™] system
	4. Submission of a test matrix for the bench-scale testing campaign
	5. Submission/approval of a Continuation Application to DOE

Decision Point	Basis for Decision/Success Criteria			
	1. Successful completion of all work proposed			
	 Complete continuous testing of integrated bench-scale CACHYS™ process for 1 month 			
End of Project	 Submission of a Topical Report - Final Technical and Economic Feasibility Study 			
Year 3	4. Submission of a Topical Report – Preliminary EH&S Assessment			
	5. Submission of a Final Report			

Significant Accomplishments

Sorbent Screening and Energetics Determination

- Sorbent formulation and selection
- Thermogravimetric analyzer/differential scanning calorimeter (TGA/DSC) used to determine sorbent capacity, kinetics and sorption energetics

Adsorption Energy Data: TGA/DSC

- Adsorption energy ~ 40-80 kJ/mol CO₂
- Below target of 80kJ/mol CO₂ and significantly lower than standard carbonate process (130 kJ/mol CO₂)

TGA/DSC Desorption Energy Data

- Desorption energy ~ 30-80 kJ/mol CO₂
- Below target of 80kJ/mol CO₂ and significantly lower than standard carbonate process (130 kJ/mol CO₂)

Fixed/Bubbling Bed Reactor Testing

Α	Mass Flow Controllers
В	Bubbler
С	Air Preheater
D	Steam Generator
E	Reactor
F	Condenser
G	Water Knockout Drum
н	5 Gas Analyzer
I	Manual Steam Control #1
J	Manual Steam Control #2
T1	Thermocouple – Air In
Т2	Thermocouple – Reactor Wall
Т3	Thermocouple – Air Out
P1	Pressure Transducer (Bottom)
P2	Pressure Transducer (Top)

ех

Sparking Innovations

Fixed/Bubbling Bed Testing: Typical Adsorption Cycle

Fixed/Bubbling Bed Testing: Typical Desorption Cycle

Adsorption Loadings for Sorbents Tested

		Total	Average Adsorption	Normalized Average Adsorption**	
Number	Sorbent	Cycles	(g CO₂)*	(g CO ₂ / 100 g pure sorbent)	
1	HCK-1	4	5.5	7.1	
2	HCK-2	5	6.5	7.1	
3	Used HCK-1	5	8.0	9.0	
4	HCK-4	5	6.7	7.1	
5	HCK-5	6	7.6	9.2	
6	HCK-7	7	7.7	9.1	
7	HCK-16	7	7.0	8.2	
8	HCK-25	11	5.8	7.2	
9	HCK-31	6	7.4	8.8	
* Does not include the first cycle ** Calculated using TGA/DSC analyses					

Sorbent Selection For Multi-Cycle Evaluation

- HCK-4 sorbent averaged 7.1 g CO₂ and was consistently in the range of 6.8-7.4 g CO₂ per 100 grams of sorbent.
- HCK-7 sorbent averaged 9.1 g CO₂ (capacities as high as 10.0 g CO₂) per 100 grams of sorbent.
- Exceeds project goal of capacity of 7.0 g CO₂ per 100 grams of sorbent.

Fixed/Bubbling Bed Reactor: Multi-cycle Sorbent Testing

- 100 cycles with down-selected sorbents, HCK-4 & HCK-7
- Gather key information on sorbent performance
 - Attrition resistance
 - Determine capacity with continuous cycling
 - Determine optimal operating conditions

Fixed/Bubbling Bed Reactor: Multi-cycle Sorbent Testing

- HCK-4 Results
 - Capacity at optimal process conditions: 8.3 g CO₂/100 g Sorbent
 - No apparent loss in sorbent capacity
 - Little attrition to 75 cycles. Measurable attrition between 75 100 cycles
- HCK-7 Results
 - Average capacity: 8.9 g $CO_2/100$ g Sorbent
 - No apparent loss in sorbent capacity
 - Little attrition through 100 cycles
- HCK-31 Results
 - Average capacity: 8.8 g $CO_2/100$ g Sorbent
 - Candidate for slipstream bench-scale testing

Fixed/Bubbling Bed Reactor: Multi-cycle Sorbent Testing

 Selected sorbents exceeded goal of 7.0 g CO₂/100g of sorbent and maintained capacity over the 100 cycle tests

Task 2: Initial Technology and Feasibility Study

- Developed detailed process scheme
- Used ASPEN Plus software for CACHYS[™] process model
- Identified all process equipment
- Designed, sized, and specified equipment
- Developed detailed plant design and plant arrangement
- Obtained plant component costs
- Determined capital costs for plant installation
- Estimated startup and ongoing operating costs
- Compared performance and costs to benchmarks

Technical and Economic Feasibility Study (550 MW_e Net Output)

- Initial Technical and Economic Feasibility (550MW_e)
 - Total O&M
 - Capital Charge
 - Total Cost
 - CO₂ Captured
 - Cost of CO₂ Capture
 - Cost of Electricity Increase

- \$28,290,000
- \$130,794,000
- \$118,577,000
- 3,614,000 Tons
- \$36.19/ton
- 40%

Task 4: Bench-Scale System Design

- Capture CO₂ from UND's Steam Plant
 - 30 acfm slip stream of flue gas from coal-fired boiler
- Gas Conditioning System
 - Fabric filter
 - Wet packed bed SO₂ scrubber
- Adsorber System
 - FD/ID fans
 - Circulating fluidized bed
 - Cyclone for bulk solids separation
 - Fabric filters for fines separation
- Regenerator System
 - Pre-heater unit
 - Regenerator unit
 - Cooler unit
- Regenerator Off-Gas System
 - Particulate filter
 - Steam condensers

Bench-Scale Design for Slipstream Testing: Block Flow Diagram

• Use of real flue gas - coal-fired boiler at the UND steam plant

raex

Sparking Innovations

Task 5: Bench-Scale Facility

- Two 20 ft. shipping containers
 - 30 ft. tall process tower fabricated by UND
 - Flue gas sampled from either of two coal-fired boilers

Bench-Scale Facility

Solex Regenerator System

- Gas conditioning system completed
- Installation of adsorber and regenerator systems continuing
 - Target completion of shakedown testing September 2013

Future Plans

- Year 2
 - Complete construction bench-scale CACHYS[™] system
 - Complete sorbent substrate optimization
- Year 3
 - Bench-scale testing Operate bench-scale adsorption and desorption facility (parametric and continuous). Collect data to determine technical feasibility at this scale (30 acfm flue gas).
 - Sorbent and process performance
 - Adsorbent and regenerator multi-cycle testing
 - Data for updating process design and economics
 - Determination of environmental health and safety concerns

Acknowledgements

- Project Funding and Cost Share
 - U.S. Department of Energy (DOE-NETL)
 - Lignite Energy Council/NDIC
 - ALLETE (Minnesota Power and BNI Coal)
 - SaskPower
 - Solex
 - UND
- DOE-NETL Project Manager Andrew Jones

Contact Information

Steven A. Benson Institute for Energy Studies, University of North Dakota (701) 777-5177; Mobile: (701) 213-7070 steve.benson@engr.und.edu

Dan Laudal Institute for Energy Studies, University of North Dakota (701) 777-3456; Mobile: (701) 330-3241 daniel.laudal@engr.und.edu

> Srivats Srinivasachar Envergex LLC (508) 347-2933; Mobile: (508) 479-3784 srivats.srinivasachar@envergex.com

