Coal Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO₂ Capture

Award #: DE-NT0005289

PI: Liang-Shih Fan

Presenter: Samuel Bayham

Department of Chemical and Biomolecular Engineering

The Ohio State University

2013 NETL CO2 Capture Technology Meeting
July 11, 2013
Pittsburgh, PA

Clean Coal Research Laboratory at The Ohio State University

Coal-Direct Chemical Looping

Cold Flow Model Sub-Pilot Scale Unit

Syngas Chemical Looping

Sub-Pilot Scale Unit

250kW_{th} Pilot Unit (Wilsonville, Alabama)

Calcium Looping Process

Sub-Pilot Unit

CCR Process

120kW_{th} Demonstration Unit

F-T Process

HPHT Slurry Bubble Column

Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO₂ Capture

Period of Performance: 2009-2013

Total Funding (\$3.98 million):

- U.S. Department of Energy, National Energy Technology Laboratory (\$2.86 million)
- Ohio Coal Development Office (\$300,000)
- The Ohio State University (\$487,000)
- Industrial Partners (\$639,000)

Major Tasks:

- Phase I: Selection of iron-based oxygen carrier particle COMPLETE
- Phase II: Demonstration of fuel reactor (coal char and volatile conversion) at 2.5 kW_t scale and cold flow model study COMPLETE
- Phase III: Demonstration of integrated CDCL system at 25 kW_t scale and technoeconomic analysis of CDCL process – IN PROGRESS

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-NT0005289 and the Ohio Coal Development Office of the Ohio Air Quality Development Authority under Contract Number CDO-D-08-02.

Coal-Direct Chemical Looping Process Development

Chemical Looping Process Concept

Coal-Direct Chemical Looping Process for Retrofit/Repower

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010, priority date 2003)

OSU CDCL Process Development

Phase I

More than **300** types of particle tested. A low cost, robust, highly reactive, and O²⁻ conductive composite particle is obtained.

TGA Fixed Bed Tests

Phase II

300+ hours operation with **>99%** volatile conversion, **>95%** char conversion

Bench Scale Tests

100+ hours of operation and testing

Cold Model Tests

Phase III

640+ hours operation with >99% solid fuel conversion, smooth solid circulation, gas sealing and in-situ ash removal

Sub-Pilot Integrated Tests

Phase III Results

Modes of CFB Chemical Looping Reactor Systems

Mode 1- reducer: fluidized bed or co-current gas-solid (OC) flows

Mode 2 - reducer: gas-solid (OC) countercurrent dense phase/moving bed flows

Chalmers University CLC System

OSU CLC System

Reducer	Mode 1	Mode 2
Operation Regime	Bubbling, turbulent, fast fluidized, or spouted bed	Moving packed, or multistage fluidized bed
Gas Solid Contacting Pattern	Mixed/Cocurrent	Countercurrent
Controllability on Fuel and OC Conversions	Poor, due to back mixing and gas channeling	High
Maximum Iron oxide Conversion	11.1% (to Fe ₃ O ₄)	>50% (to Fe & FeO)
Solids circulation rate	High	Low
Ash Separation Technique	Separate Step	In-Situ
Subsequent Hydrogen Production	No	Yes
Particle size, µm	100-600	1000-3000
Reducer gas velocity*, m/s	<0.4	>1.0
Reactor size for the same fuel processing capacity	Large	Small
Hydrodynamics effects on scaling up	Large	Small

^{*}Reducer gas velocity calculated at 900 °C, 1 atm

Reducer Reactor Design

Two-stage moving bed

- Stage I for gaseous volatiles
- Stage II for coal char

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010, priority date 2003)

- Fuel Design Input: 25 kW_{th}
- Fully assembled and operational
- 640+ hours of operational experience
- 200+ hours continuous successful operation
- Smooth solid circulation
- Confirmed non-mechanical gas sealing under reactive conditions

Fuel Feedstock Studied

Fuel Feedstock	Туре	Fuel Flow (lb/hr)	Enhancer
Syngas	CO/H ₂	0.1-1.71	N/A
Coal volatile/ Natural Gas	CH₄	0.1-0.4	N/A
Coal char	Lignite	0.7-2.0	CO ₂ /H ₂ O
Coal Chai	Metallurgical Coke	0.05-3	CO ₂ /H ₂ O
	Sub-Bituminous	0.05-7.38 (25 kW _{th})	CO ₂ /H ₂ O
Coal	Bituminous	0.05-3	CO ₂ /H ₂ O
	Anthracite	0.2-0.7	CO ₂ /H ₂ O
	Lignite	2.84-6.15 (20 kW _{th})	CO ₂
Biomass	Wood pellets	0.1	CO ₂
Coke	Petroleum Coke	1.98-5.95	CO ₂ /H ₂ O

- Combined >940 hours of sub-pilot operational experience
- Achieved high conversion on all fuel feedstock
- Successful results for all coal/coal derived feedstock tested

200+ Sub-Pilot Continuous Run Results

200+ Sub-Pilot Continuous Run Results

- Continuous steady carbon conversion from reducer throughout all solid fuel loading (5-25kW_{th})
- <0.25% CO and CH₄ in reducer outlet = full fuel conversion to CO₂/H₂O
- <0.1% CO, CO₂, and CH₄ in combustor = negligible carbon carry over, nearly 100% carbon capture

Parametric Studies Performed

Fuel Type	Fuel Flow (g/min)	Enhancing Gas Flow (L _n /min)	CO ₂ Purity (%)	Reducer Carbon Conv. (%)
Subbituminous	23	5.0, CO ₂	99.7%	96.9%
Subbituminous	23	3.0, CO ₂	99.6%	96.5%
Subbituminous	22	1.0, CO ₂	99.0%	88.0%
Subbituminous, lower port	22	1.0, CO ₂	98.0%	~100%
Subbituminous	32	5.0, CO ₂	99.7%	96.9%
Subbituminous	46	5.0, CO ₂	99.7%	96.9%
Subbituminous	56	5.0, CO ₂	99.5%	96.9%
Subbituminous	68	5.0, CO ₂	98.5%	99.9%
Subbituminous	15	5.0, H ₂ O	98.9%	97.8%
Subbituminous	22	5.0, H ₂ O	94.0%	99.8%
Subbituminous	38	5.0, H ₂ O	99.3%	96.3%
Lignite	22	5.0, CO ₂	99.6%	97.7%
Lignite	46	5.0, CO ₂	99.6%	96.3%

Parameters studied include

- Fuel flow rate
- Fuel type
- Enhancer gas type
 (CO₂, H₂O)
- Enhancer gas flow rate
- Injection location

Unsteady State Studies Performed

Effect of enhancing gas on approach to steady state

Effect of coal injection on system temperatures and pressures

Supporting Work: Phases I, II

Phase I: Oxygen Carrier Particle Development

Primary Metal Properties

Redox Pair	Fe ₂ O ₃ -Fe ₃ O ₄	Fe ₂ O ₃ -Fe	CuO-Cu ₂ O	CuO-Cu	CaSO ₄ -CaS	Mn ₃ O ₄ -MnO	NiO-Ni
Reducer Mode	1	2	1	1	1	1	1
Melting point, °C	1566-1538	1566-1535	1326-1235	1326- 1085	1460- 2525	1567-1650	1955- 1455
Cost, \$/ton1	319	319	7679		27	1000	21804
Recyclability Test, cycles	>100	>100 ³	>334		<5	5 ⁵	5 ⁵
Theoretical OCC, kg O2/kg	0.033	0.3	0.1	X		0.07	
Conversions ²		50-60%	60%		X		X
Support, %	X	40-60	60-80			X	
Actual OCC, kg O2/kg		0.06-0.11	0.012-0.024				
Crushing Strength, N		>60	<0.5				

- 1. Primary material cost, dollars in 2010 from US Geological Survey;
- 2. The actual conversion limited by both thermodynamics and kinetics;
- 3. Li, F. et al. *Energy Fuels* **2009**, *23*, 4182 4189.;
- 4. Eyring, EM. et al. Oil Gas Sci. Technol. 2011, 66, 209-221.;
- 5. Lyngfelt, A. Oil Gas Sci. Technol. 2011, 66, 161-172.

Phase I: Oxygen Carrier Particle Development

Ellingham Diagram: Selection of Primary Metal

Phase I: Oxygen Carrier Particle Development

OSU Particle (over 300 particles) Performance

High Reactivity

High Recyclability

High Carbon Deposition Tolerance

High Pellet Strength

Phase II: Reducer Reactor Design and Testing

Phase Diagram – Thermodynamic Restrictions

Shaded area is not reducer operation zone

Operating Equation for Moving Bed Reducer

Fixed solid molar flowrate n_{Fe},

Oxygen content for solid
$$y = \frac{3n_{Fe_2O_3} + 4n_{Fe_3O_4} + n_{FeO}}{n_{Fe}}$$

Fixed gas molar flowrate $n_{H2} + n_{H2O}$,

Oxygen content for gas

Oxygen Balance

$$n_{Fe}(y_{z+\Delta z}-y_z)=(n_{H_2}+n_{H_2O})(x_{z+\Delta z}-x_z)$$

Countercurrent moving bed: straight operation line with negative slope

Similarly, Concurrent fluidized bed: straight operation with positive slope

 $\Delta z \rightarrow 0 \Rightarrow dy / dx = (n_{H_2} + n_{H_2O}) / n_{Fe}$ Fan, L-S. "Chemical Looping Systems for Fossil Energy Conversion, Wiley AIChE, 2010.

Phase II: Reducer Reactor Design and Testing

Operation Diagram

The operating line is straight when feeding ratio is fixed: solid line represents countercurrent moving bed operation, dash line represents co-current fluidized bed operation

Phase II: Reducer Reactor Design and Testing

Stage I – Volatile Conversion

Stage II – Char Conversion

Summary of Bench Scale Unit Testing Results

Time of Fire!	Stage I - Coal Volatile		Stage II - Coal Char		Coal		
Type of Fuel	CO, H ₂	CH ₄	Lignite char	Bituminous char	PRB	Bituminous	Anthracite
Fuel Conversion, %	99.9	99.8	94.9	95.2	>97	>95	95.5
CO ₂ purity, %	99.9	98.8	99.23	99.1	_*	-	97.3

- Conducted in co-current mode, no gas analyzer was used to monitor the CO₂ purity.

Techno-Economic Analysis

Process Simulation and Analysis

Systems Analysis Methodology

- Performance of CDCL plant modeled using Aspen Plus[®] software
- Results compared with performance of conventional pulverized coal (PC) power plants with and without CO₂ capture
 - U.S. Department of Energy, National Energy Technology Laboratory; *Cost and Performance Baseline* for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (November 2010)
 - Case 11 Supercritical PC plant without CO₂ capture ("Base Plant")
 - Case 12 Supercritical PC plant with MEA scrubbing system for post-combustion CO₂ capture ("MEA Plant")
- All plants evaluated using a common design basis
 - 550 MW_e net electric output
 - Illinois No. 6 coal: 27,113 kJ/kg (11,666 Btu/lb) HHV, 2.5% sulfur, 11.1% moisture as received
 - Supercritical steam cycle: 242 bar/593°C/593°C (3,500 psig/1,100°F/1,100°F)
 - ≥ 90% CO₂ capture efficiency (MEA and CDCL Plants)
 - CO₂ compressed to 153 bar (2,215 psia)
- Results are preliminary, will be used to guide further design improvements

Process Simulation and Analysis

Capture. In Proceedings of the 37th International Technical Conference on Clean Coal and Fuel

Systems, Clearwater, FL, June 3-7, 2012.

Aspen Plus® Modeling Results

	Base Plant	MEA Plant	CDCL Plant
Coal Feed, kg/h	185,759	256,652	207,072
CO ₂ Emissions, kg/MWh _{net}	802	111	28
CO ₂ Capture Efficiency, %	0	90.2	97.0
Solid Waste, a kg/MWh _{net}	33	45	43
Net Power Output, MW _e	550	550	548
Net Plant HHV Heat Rate, kJ/kWh (Btu/kWh)	9,165 (8,687)	12,663 (12,002)	10,248 (9,713)
Net Plant HHV Efficiency, %	39.3	28.5	35.2
Energy Penalty, ^b %	-	27.6	10.6

^aExcludes gypsum from wet FGD. ^bRelative to Base Plant; includes energy for CO₂ compression.

First-Year Cost of Electricity

	Base Plant	MEA Plant	CDCL Plant
First-Year Capital (\$/MWh)	31.7	59.6	44.2
Fixed O&M (\$/MWh)	8.0	13.0	9.6
Coal (\$/MWh)	14.2	19.6	15.9
Variable O&M (\$/MWh)	5.0	8.7	8.7
TOTAL FIRST-YEAR COE (\$/MWh)	58.9	100.9	78.4

Connell, D.P.; Dunkerley, M.L.; Lewandowski, D.A.; Zeng, L.; Wang, D.; Fan, L.-S.; Statnick, R.M. Techno-Economic Analysis of a Coal Direct Chemical Looping Power Plant with Carbon Dioxide Capture. In Proceedings of the 37th International Technical Conference on Clean Coal and Fuel Systems, Clearwater, FL, June 3-7, 2012.

Accomplishments

Completed

- >640 hrs of integrated 25 kW_t sub-pilot scale operations achieving 90-99+% coal conversion
- The longest demonstration to date is >200 hours continuous with smooth operations and high fuel conversions.
- The CDCL process has the potential to meet DOE's goal of ≥90% CO₂ capture at no more than a 35% increase in cost of electricity

Future work

- Test other fuels such as woody biomass and corn stover
- Work closely with B&W to scale-up to pilot plant (3 MW_{th})

Partners

Government Agencies

- DOE/NETL: Bruce Lani,
 Timothy Fout, David Lang
- OCDO/ODSA: Chad Smith, Greg Payne

Industrial Collaborators

- Babcock & Wilcox (B&W): Tom Flynn, Luis Vargas, Doug Devault, Bartev Sakadjian and Hamid Sarv
- Clear Skies Consulting LLC: Bob Statnick
- CONSOL Energy: Dan Connell, Richard Winschel, and Steve Winberg
- Air Products: Robert Broekhuis, Bernard Toseland
- Shell/CRI

Thanks