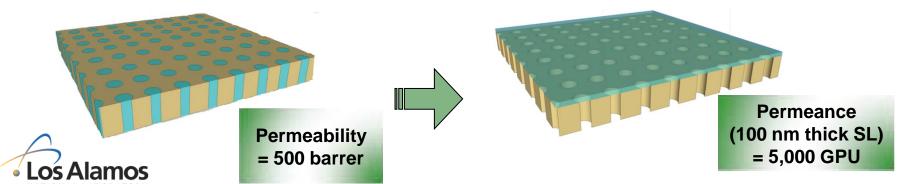


Gelled Ionic Liquid-Based Membranes

Rajinder P. Singh, Kathryn A. Berchtold, Richard D. Noble, Douglas L. Gin, Abhoyjit Bhown and Laura Nereng

2013 NETL Carbon Capture Technology Meeting Pittsburgh, 11th July, 2013



Project Objectives and Goals

- ➤ A carbon-capture membrane with CO₂ permeance approaching 5,000 GPU and moderate CO₂/N₂ selectivity could significantly reduce cost of post-combustion carbon capture from flue gas
- ➤ Room-temperature ionic liquids (RTILs) are attractive materials due to high permeability (>1000 barrer) and good CO₂/N₂ permselectivity (20– 50)
- ➤ To meet performance target, RTILs must be <u>immobilized as a</u> <u>continuous, defect-free thin film</u>, ca. 100 nm thick (permeability dependent), on a porous support achievable via industrially relevant coating/fabrication techniques

Project Overview

- Project Start Date: Feb. 1, 2011
- End Date: Jan. 31, 2014
- Total funding: \$3,927,591
 - DOE ARPA-E: \$3,142,071
 - ➤ DOE cost share numbers: \$785,520 (of which \$600,000 is provided by TOTAL, S.A.)
- This work is a result of a collaboration between the
 - University of Colorado (CU), Boulder
 - Los Alamos National Laboratory (LANL)
 - Electric Power Research Institute (EPRI)
 - 3M
 - ☐ TOTAL, S.A.

Project Team

Richard Noble

Douglas Gin

Rhia Martin

Will McDanel

Matt Cowan

Trevor Carlisle

A. Lee Miller II

Kathryn Berchtold

Rajinder Singh

Kevin Dudeck

Cynthia Welch

Abhoyjit Bhown

Joseph Swisher

Ashish Khandpur

Laura Nereng

Bill Dudley

Cemal (Sam) Duru

Dale R. Lutz

Jinsheng Zhou

John Schmidt

Kannan Seshadri

Krzysztof Lewinski

Michelle Mok

Ping Liu

Scott Litzelman

Karma Sawyer

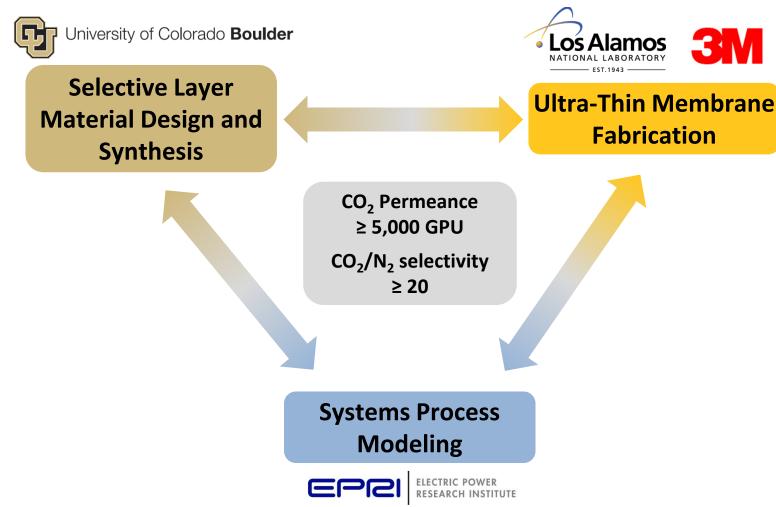
Mark Hartney

Key Milestones

·			
BP01	 Title: Assessment of Ability of Proposed Technology to Meet Project Permeance & Selectivity Targets Criteria: • Demonstration of ability to increase permeance by ≥ an factor of 2 over benchmark data using material modifications and membrane fabrication optimization • Demonstrate membrane CO₂/N₂selectivity ≥ 20 • Demonstrate membrane adhesion at predicted process temperatures (>50 °C) 	Completed	
BP02	Down-select and rank selective layer materials with highest potential to achieve project goals and DOE Program targets		
BP02	Down-select and rank selective layer materials and material/coating methodology combinations with highest potential to achieve project goals and DOE Program targets		
BP02	Report results of preliminary membrane process design based on initial membrane performance data		
BP03	 Title: Assessment of Ability of Proposed Technology to Meet ARPA-E, DOE-FE NETL Program Targets (cost and carbon emissions reduction) as Defined via Systems & Economic Analysis Criteria: Demonstration of ability to meet project's permeance and selectivity targets (5000 GPU, CO₂/N₂selectivity ≥ 20). 	In-progress	

NETL CCT Meeting 2013

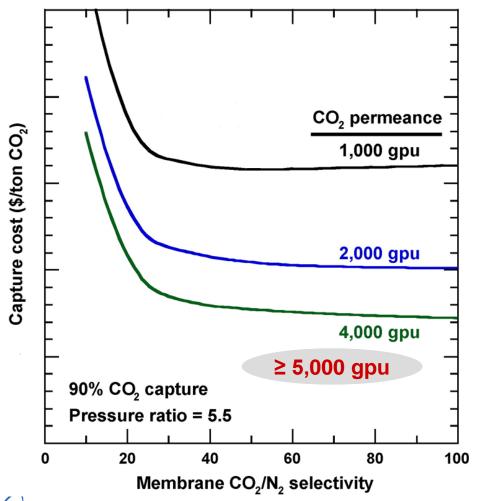
Project Tasks


- Selective Layer Design Synthesis & Evaluation
 - Tailored gel-RTILs, RTIL/poly(RTIL) composites, incorporation of taskspecific CO₂ complexation chemistries
 - Optimize permeability/selectivity and material properties of Selective Layer Materials
- Ultra-Thin Membrane Fabrication, Optimization, & Testing
 - Commercially viable fabrication techniques development for new RTILbased materials - to enable controlled ultra-thin SL deposition on commercially attractive support platforms
 - Ultrasonic spray coating technique (USCT)
 - Roll to roll casting
- Membrane, Systems, and Economic Analyses

Project Overview

Membrane Terminology

Permeability is a material property: describes rate of permeation of a solute through a material, normalized by its thickness and the pressure driving force


$$Permeance = \frac{Permeability}{Thickness} = \frac{Flux}{\Delta p}$$

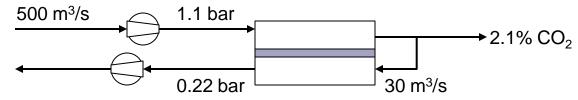
- Permeance is a membrane property: calculated as solute flux through the membrane normalized by the pressure driving force (but not thickness)
- Ideal selectivity describes separation factor: the ratio of permeability (or permeance) of two different components in a membrane, and is a material property
- High membrane permeance is achieved by both material selection (high permeability) and membrane design (low thickness)

High Permeance – Economic Advantages

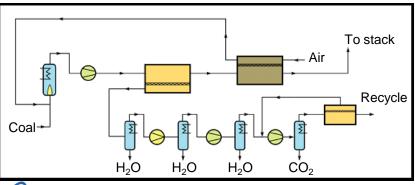
- ➤ Membrane separation systems with high CO₂ permeance and moderate CO₂/N₂ selectivity are desirable
- Estimated capture cost is proportional to CO₂ permeance for CO₂/N₂ selectivities greater than 30

"Higher CO₂ permeance will lead to reduction in capture cost"

Adapted from: T. C. Merkel et al., J. Memb. Sci., 359, 2010, 126-139.



Preliminary Economic Evaluation


Task 1: Benchmarking with MTR results

Single counter current sweep stage

Case	Membrane area (MM m²)	Total power MTR* (MW)	Total power This work (MW)
Dry feed	4.3	46.4	44.6
Wet feed	3.9	47.2	53.1

The MTR process

Total Area

1.3 MM m²

Blower pressure

2 bar

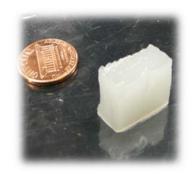
Capture Rate

90%

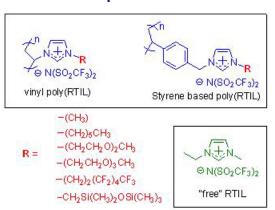
Vacuum pressure

0.2 bar

Total power	required	(MW)
-------------	----------	------

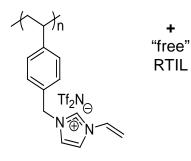

MTR	This work	
97	102	

*T. C. Merkel et al., JMS, 359, 2010, 126-139.



Bulk RTIL Membrane Materials Overview

Gelled RTIL



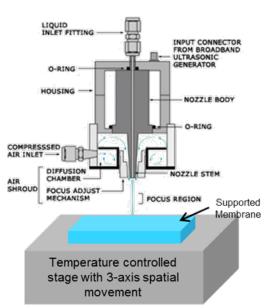
Linear Poly(RTIL)/RTIL Composites

METE OUT MEETING 2013

Photo-curable Poly(RTIL)s and Composites

PVDF-co-HFP/RTIL Composites

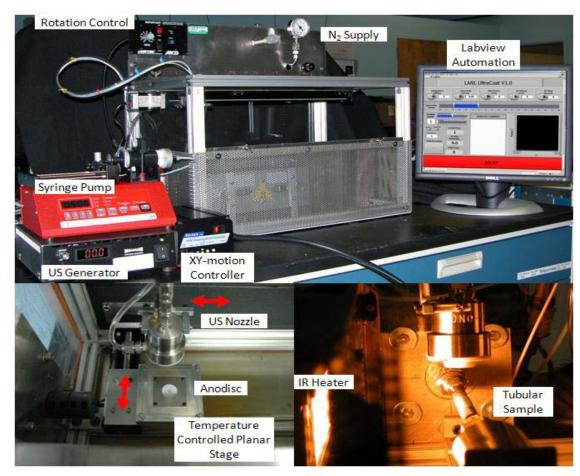
"free" RTIL


Evolution of Materials

Bulk Material:	Gelled RTIL	Linear Poly(RTIL)/RTIL	Photo-curable Poly(RTIL)/RTIL	PVDF- <i>co-</i> HFP/RTIL
RTIL Loading (wt%):	98	40	80	80
CO ₂ Permeability (barrers):	950	105	650	650
CO ₂ /N ₂ Selectivity:	21	21	35	35
Physical Properties:	Mechanically weak	Brittle	Good	Good

Fabrication Approach 1: Ultrasonic Spray Coating

- Ultra-Thin Membrane Fabrication, Optimization, & Testing
 - Commercially viable fabrication technique development using ultrasonic spray-coating technology (USCT) -- enables controlled ultra-thin SL deposition on commercially attractive support platforms
 - Maximize Permeance Attainable with Selectivity Retention -- defect mitigation with cohesive coating achieved

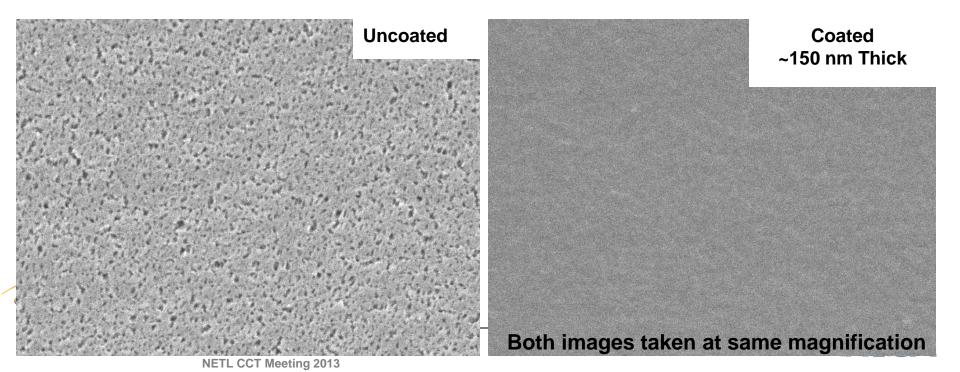


USCT-based Deposition

Semi-automated small scale ultrasonic spray coating system for ultrathin film deposition on tubular and planar substrates with in-situ

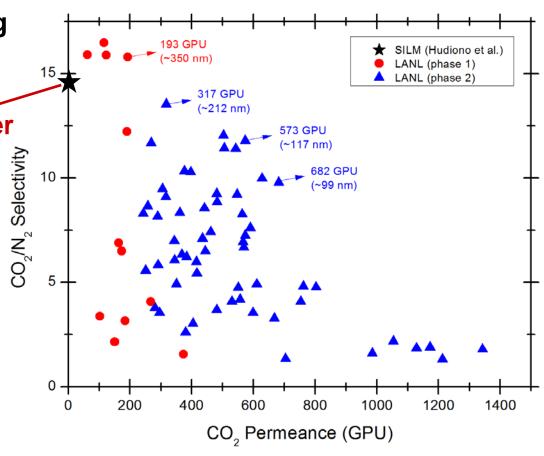
processing

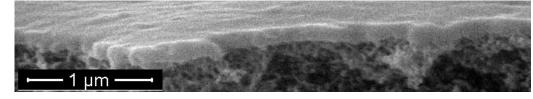
- System control parameters include:
 - Liquid flow rate
 - Spray geometry/profile
 - Coating profile / Raster speed
 - Substrate temperature
 - In-situ IR and UV irradiation
 - LabView® automation
 - Self-contained enclosure



RTIL based Ultra-thin Coating Development

- Developed methods to fabricate RTIL based selective layers on commercially attractive porous polymer supports
 - Numerous membranes fabricated to understand the effects of various coating parameters on selective layer deposition and its gas permeation characteristics
- Coating process optimization lead to 100-150 nm defect free coatings

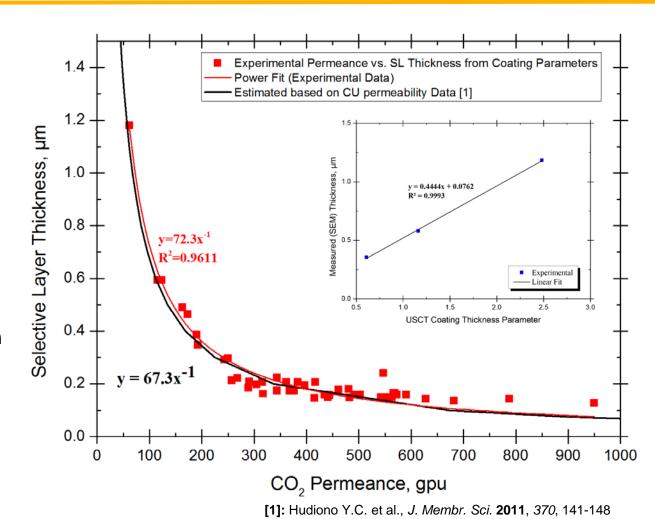



Ultra-thin Membrane Characterization

Dramatic influence of coating parameters on membrane performance

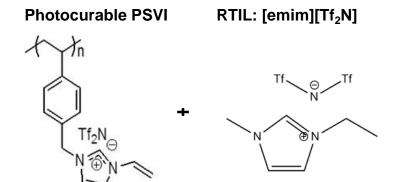
Permeability = 67.3 barrer

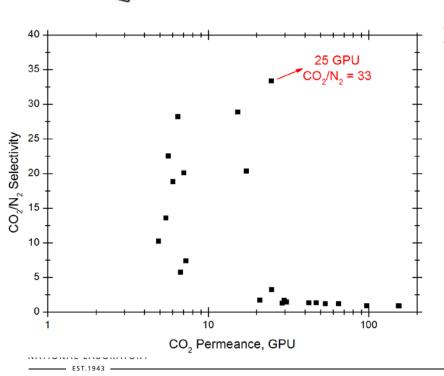
- ▶ Demonstrated defect-free poly(RTIL) composite membrane with CO₂ permeance of 317 GPU approximately 212 nm effective thickness
- Fabricated numerous membranes with CO₂ permeance ≥ 500 and near ideal CO₂/N₂ selectivity ≥ 10



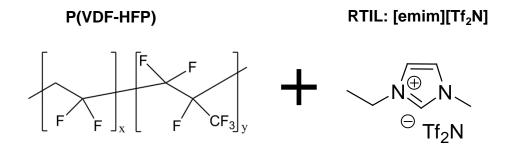
Controlling Membrane Fabrication Process

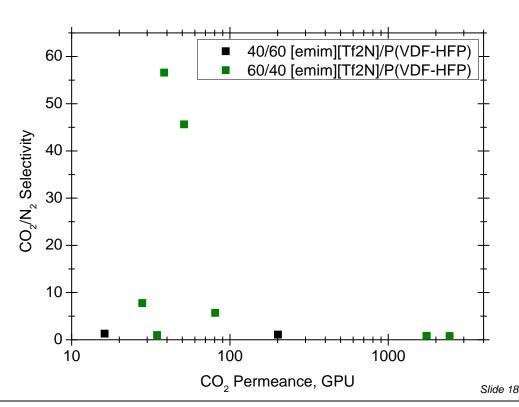
- Limited SEM thickness data set used for correlation with USCT coating thickness parameter (inset plot)
- Excellent correlation achieved between CO₂ permeance and estimated SL thickness
- Estimated permeability from composite membranes (72.3 barrer) in good agreement with CU permeability (67.3 barrer). (Membranes with CO₂/N₂ > 5 used in the analysis)





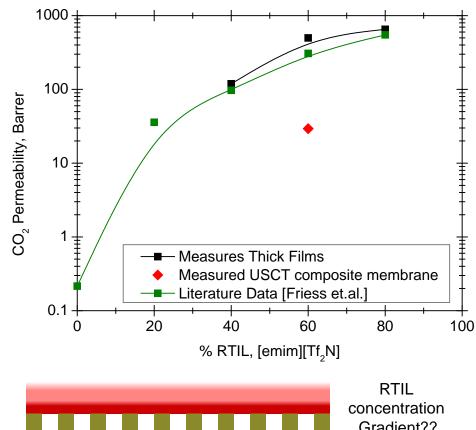
Fabrication of PSVI/RTIL Composite Membranes

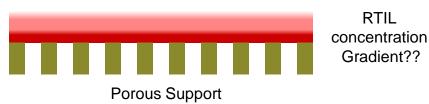

- High fraction of free RTIL (>50%) required to achieve high permeability
- ▶ Fabrication of PSVI-based composite membranes with varying RTIL ratios using USCT yields membranes with high CO₂/N₂ selectivity
 - However, the permeances are much lower than expected from SILM data
 - With target thicknesses 1-2 µm, permeances are expected to be in the order of >100 GPU
 - Our best membrane fabricated using 80/20 PSVI/emim-Tf₂N, with CO₂/N₂ selectivity of 33, only has CO₂ permeance of 25 GPU (estimated selective layer thickness = 2 μm)


Slide 17

P(VDF-HFP)/emim-Tf₂N Composite Membranes

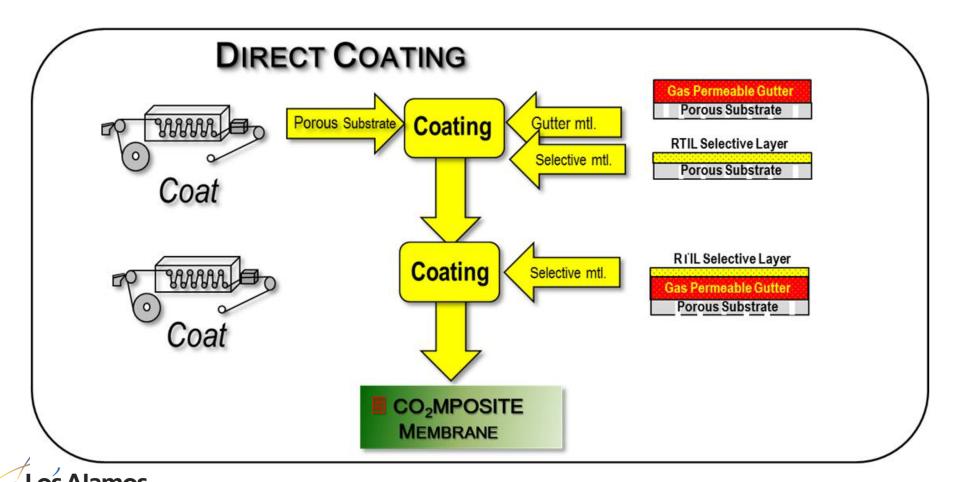
- Fabricated and evaluated p(VDF-HFP)/emim-Tf₂N composite membranes containing 40 and 60% emim-Tf₂N
 - Selective layer thickness varied from 0.2 to 1.8 µm
 - High CO₂/N₂ selectivity obtained for 60/40 emim-Tf2N/p(VDF-HFP) composite membrane with 0.9 µm thick selective layer!
 - CO₂ permeance lower than that estimated from the CO₂ permeability obtained from bulk p(VDF-HFP)-RTIL composite films





Achieving High Permeance??

- Composite membranes fabricated by USCT have significant lower permeance than that estimated from the permeability data.
 - **Permeability of composite** membrane with 60% free RTIL similar to permeability of film containing 20% RTIL
 - Possible phase separation or RTIL migration to the support with solvent during coating leading to lower RTIL concentration in the selective layer.
 - Pore penetration in the support pores increasing effective thickness.



Fabrication Approach 2: Roll to Roll Casting

Direct single or multi-step coating on nano-porous substrate

Direct Casting on Porous Substrate

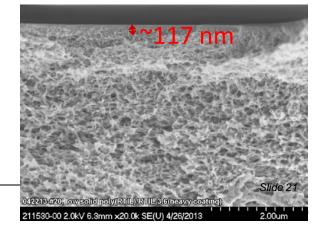
- Selectivity observed but low permeance
 - SEM cross sections show much thinner coatings than thickness targeted
 - Pore infiltration?
 - Free RTIL being carried into substrate by solvent?

Sample	Target Thickness	Est. Obs. Thickness	CO ₂ Permeance	N ₂ Permeance	CO ₂ /N ₂ Selectivity
10-PVDF Comp.	2.8 um	235 nm	93	30	3.1
11B-PVDF Comp.	1.9 um	235 nm	73	30	2.4
16-PolyRTIL Comp.	2.8 um	266 nm	292	27	11
17-PolyRTIL Comp.	1.5 um	208 nm	292	28	10
20-PolyRTIL Comp.	1.5 um	117 nm	7730	917	8.4
24A-PolyRTIL Comp.	1.5 um	-	459	40	12

(10) PVDF Composite

+ ~2.35 nm

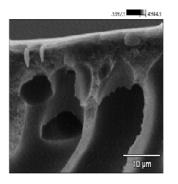
- 266 nm

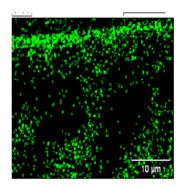

5. De 022219-418-Rolly(RITLE)/RRIL-36 (heavy coating)
211530-00 2.0kV 6.2mm x20.0k SE(U) 4/25/2013

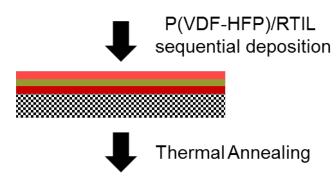
2.00um

20 211530-00 2.0kV 6.1mm x20.0k SE(U) 4/25/2013

2.00um


(20) PolyRTIL Composite





Newly Encountered Challenges for Thin Film Casting

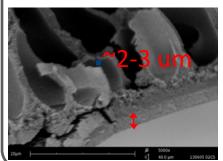
- Discrepancy observed between measured bulk materials and thin film membrane properties
 - Hypothesis: Free RTIL being lost to porous substrate leaving majority polymer in coating
 - Elemental x-ray mapping confirms presence of fluorine in substrate

- Future Directions:
 - Optimize processing with RTIL rewetting procedure
 - Analytical characterization to understand
 RTIL-poly(RTIL) interactions

Pure RTIL Layer

P(VDF-HFP) layer with low RTIL loading

P(VDF-HFP) layer with high RTIL loading



Slide 22

Preliminary Results: Secondary Coating & Post-Treatment

• Experiment: Post-treat 2-3 um PVDF-HFP coating with pure free RTIL to promote diffusion Result: Selectivity enhanced to bulk values; permeance appears unchanged

RTIL Post-Treatment	CO ₂ Permeance	N ₂ Permeance	CO ₂ /N ₂ Selectivity
None	16	16	1.0
50 C, 20 min	16	0.5	33
80 C, 5 min	22	0.7	30

Experiment: Apply secondary polymer/RTIL coating containing 75-80% free RTIL (Thickness ~200-300nm)
 Result: Selectivity enhanced; permeance slightly reduced

Sample	Post-Treatment	CO ₂ Permeance	N ₂ Permeance	CO ₂ /N ₂ Selectivity
PVDF-HFP	None	93	30	3.1
Comp.	+ 2 nd Coating, 5 min at 50 C	32	5.6	5.7
(240 nm)	+ 2 nd Coating, 20 min at 50 C	64	6.5	9.8
PolyRTIL	None	290	27	11
Comp.	+ 2 nd Coating, 5 min at 50 C	230	12	18
(270 nm)	+ 2 nd Coating, 20 min at 50 C	240	14	17

Summary

- Two classes of RTIL-based gel materials with bulk gas transport properties that meet the CO₂/N₂ permeability and selectivity targets were developed.
- Several examples of these two classes of RTIL-based gel materials were successfully cast at a thickness of 100 nm.
- A discrepancy between the bulk and composite membrane gas transport properties was observed.
- Several approaches to address this processing challenge have been developed and are being explored in earnest.
- Thorough analysis of the thin-film membranes produced to date is in progress.
- Preliminary modeling results technological and economic benefits over state-of-the-art CO₂ capture technology
- This work generated 7 published papers + 2 papers just accepted + 2 papers in preparation and 2 patent applications.

Path Forward

To Project Completion

- Develop a quantitative understanding of how the deposited material is distributed in the composite membrane both within the support and through the selective layer thickness.
- Multiple Layer coatings and post-processing to increase the permeability and selectivity of the final membrane.
- Complete parametric studies to further understand the influences of membrane performance characteristics on process economics.

Transition to Commercialization

• In order to enhance the potential for industrial interest, we will also evaluate the membranes for CO₂/CH₄ separation (natural gas treatment) as requested by a petrochemical company. The selectivity target is CO₂/CH₄ selectivities >20 at low pressure and ambient temperature.

Acknowledgements

- DOE Advanced Research Project Agency Energy (ARPA-e)
 - Innovative Materials & Processes for Advanced Carbon Capture Technologies (IMPACCT) Program
- Total S.A.

