

Low-Pressure Membrane Contactors for Carbon Dioxide Capture DE-FE0007553

-Richard Baker, Ken Chan, Brice Freeman, Don Fulton,

Pingjiao Hao, Jay Kniep, Vincent Nguyen (MTR)

—Glenn Lipscomb, Terry Lou (University of Toledo)

NETL CO₂ Capture Technology Meeting

Wednesday, July 10, 2013

Membrane Technology and Research

MTR designs, manufactures, and sells membrane systems for industrial gas separations

-70 Employees

-2012 Sales: \$25 million

Project Overview

- Award name: Low-pressure Membrane Contactors for CO₂ Capture
- Project period: 10/1/11 to 9/30/14
- Funding: \$ 3.0 million DOE; \$1.0 million MTR
- DOE program manager: Mike Mosser
- Participants: MTR, University of Toledo
- <u>Project scope:</u> Develop compact large membrane area (> 500 m²), low pressure drop plate-frame sweep module for CO₂ capture application
- **Project plan:** The key project work organized by budget period is as follows:
 - BP1 : Construct prototype laboratory modules (20m²), select components, develop fabrication technology.
 - BP2: Scale up production to 1m x 1m pilot scale modules (100m²), demonstrate with lab test system that modules meet CO₂ separation performance and pressure drop targets.
 - BP3: Scale up to full scale module (> 500 m²), show modules meet all performance targets. Be ready to test at NCCC.

The MTR Membrane Contactor

A Way of Generating an Affordable (Partial) Pressure Difference

A separation is performed at a minimal energy cost

A Coal Power Plant

A Membrane CO₂ Pre-Concentrator

MTR's Membrane Solution

500 MW_e plant requires one million m² of membrane

The Issues and Solutions

Membrane module area and cost are not an issue

- Skid packing density
- Manifolding
- Footprint
- A sweep process
- Needs low pressure drop

Large area modules, compact skids

Needs wide, straight channels on both sides of the membrane

Membrane Module Designs in Current Use

Capillary Fibers

Spiral-Wound Modules

Hollow Fine Fibers

Plate-and-Frame Modules

Packing Density for Different Membrane Module Configurations

Two Membrane Contactor Designs

Countercurrent

- Most efficient
- Difficult to make

Cross-flow

- Uses 40% more membrane area
- Easier to make

Progress to Date

Year 1

- Footprint:1ft x 2 ft
- Modules:20 m²

Year 2

- Footprint:1m x 1m
- Modules:100 m²

Our Concept

Membrane Module and Test System

Membrane Contactor with Vessel

Test System

Module Pressure Drop within Target Range

Partial Countercurrent Design

Needs 30% more membrane compared to countercurrent

Partial Countercurrent Design

Needs 18% more membrane compared to countercurrent

Our Plans

- Refine module fabrication techniques
- Improve module flow design
- Develop multi-element modules (3~5 elements)
- Test modules at NCCC (2014)

Combination Process May Be the Way to Go

- Double the CO₂
 concentration
- 50% removal required

- Double the CO₂ concentration
- Half the flow

