## Polymer-Encapsulated Carbonate Solvents for Improved Bicarbonate Solids Utilization with Minimal Liquid Water

Roger D. Aines Lawrence Livermore National Laboratory

#### Award:

09/CJ000/05/01 (LLNS)

DE---AR0000099 (University of Illinois and Babcock & Wilcox)

**Lead Recipient:** 

Lawrence Livermore National Security, LLC (LLNS)

**Project Title:** 

Catalytic Improvement of Solvent Capture Systems





The Babcock and Wilcox Company Harvard University

LLNL-PRES-555917

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



# Our quest for dramatic improvement in capture cost started with *speed*

#### WHY?

Enable lower energy solvent systems

#### WHAT?

- Rugged synthetic catalysts
- Surface area enhancement

# We developed a family of catalysts that speed capture in hindered amines and carbonates



# And all are dramatically better during incubation at 75 C (>40×)



#### 5) Kinetic activity of Zn cyclen exposed to hot K<sub>2</sub>CO<sub>3</sub>

#### **Experiment:**

- 1) incubate catalyst in  $K_2CO_3$
- 2) dilute and measure CO<sub>2</sub> hydration rate





Incubation of Zn Cyclen in hot K<sub>2</sub>CO<sub>3</sub> improves catalytic activity

# Cyclen-Zn is rugged and catalyzes CO<sub>2</sub> hydration but is inhibited by bicarbonate



#### Inhibition affects all carbonic anhydrase isoforms.

K<sub>I</sub>:inhibition constant. Lower K<sub>I</sub>=more inhibition

| α-CA        | Kı    | β-CA     | Kı    | γ-CA       | Kı       | ζ-CA                               | K <sub>I</sub> |
|-------------|-------|----------|-------|------------|----------|------------------------------------|----------------|
| HCA I       | 12    | Can2     | 0.75  | Zn-<br>Cam | 42       | Cd-<br>R1                          | 0.12           |
| HCA II      | 85    | scCA     | 0.78  | Co-<br>Cam | 0.1<br>0 | Zn-R1                              | 0.10           |
| HCA III     | 0.74  | cgNce103 | 0.086 |            |          |                                    |                |
| HCA<br>VA   | 82    | Cab      | 44.9  |            | •        | 6., Supurar<br>chem., <b>201</b> 1 |                |
| HCA<br>VII  | 0.16  | PCA      | 0.33  |            |          | ,                                  | ,              |
| mCA<br>XIII | 140   | stCA I   | 0.64  |            |          |                                    |                |
| mCA<br>XV   | 0.008 | stCA II  | 27.9  |            |          |                                    |                |

- •Carbonic anhydrases are subject to bicarbonate inhibition.
- •Widely varying degree of inhibition depends on the degree to which the active site is "buried" within the protein.

## And the winning catalysts are:

#### Best for:

High T cycles – stable to 120°C Low carbonate concentrations

Best for:

High carbonate concentrations Lower T recycle – to 80°C





Zn Cyclen K<sub>cat</sub> 700 M<sup>-1</sup>s<sup>-1</sup>





Zn Acyclic Proline (N,N'-dimethylethylenediamine) K<sub>cat</sub> 900 M<sup>-1</sup>s<sup>-1</sup>

# But the Rochelle work has shown that water is the hidden cost in CO<sub>2</sub> capture

| Solvent Heat of Absorption                   | Moles Water<br>Evaporated in<br>Stripper @80C |  |  |
|----------------------------------------------|-----------------------------------------------|--|--|
| 30 KJ/mole CO <sub>2</sub> (e.g. carbonates) | 3.5                                           |  |  |
| 80 KJ/mole CO <sub>2</sub> (e.g. piperazine) | 0.6                                           |  |  |

Low-enthalpy liquid solvents produce net increases in energy due to the high vapor pressure of water

Schoon and VanStraelen TCCS-6

## So:

Low-enthalpy solvents don't improve on amine energy cost (due to water)

**But:** 

Amine systems are too expensive for large scale use.

# Let's not give up – zero-water capture is possible, and at low enthalpy

**Thermonatrite** Na<sub>2</sub>CO<sub>3</sub>·H2O



Sodium Carbonate

 $+ CO_{2}(g) \implies$ 



ΔH -18 KJ/mole CO2

This is ¼ of the intrinsic energy cost of amines

**Nahcolite** NaHCO<sub>3</sub>



Sodium Bicarbonate



Water is required as a flux – making a difficult crystal mush

Rates of uptake are still limited by carbonate solution kinetics – very slow

## What if....

- ✓ We could achieve acceptable reaction speeds, and
- ✓ Manage the solids with minimal water?



# Our second innovation –microencapsulated solvents made from a photocurable silicone



#### Multiple solvents and solids

- MEA
- Carbonates
- Fluorescein

#### And shell materials

- Silicones (Semicosil)
- NOA



# Production requires balanced fluid properties – almost any polymer and fluid can work

Size control: shell diameter & thickness

Encapsulates ~100% of inner fluid

Core fluid can also have solids, or no liquid at all

Production rate: 1-100

Hz



A.S. Utada, et al., Science 308, 537 (2005)



| Capillary  | ID (μm) | OD (μm) |  |
|------------|---------|---------|--|
| Injection  | 50      | 870     |  |
| Collection | 500     | 870     |  |
| Square     | 900     | 1000    |  |

| Fluid        | Viscosity (cP) | Flow rate (μl h <sup>-1</sup> ) |  |
|--------------|----------------|---------------------------------|--|
| Inner Fluid  | 10-50          | 1200-2500                       |  |
| Middle Fluid | 10-50          | 800-1700                        |  |
| Outer Fluid  | 100-500        | 2000-5500                       |  |

# Created originally as recyclable, high surface area liquid reactors for CO<sub>2</sub> concentration

Created by microfluidic "inkjet"

CO<sub>2</sub> absorbs through wall

Fully recyclable

Surface area formed by capsule, not an expensive packed tower



# Capsules increase carbonate capture rate by 10x (compared to same volume of liquid)





(This is still about 10x slower than amine systems – more on that later)

## And they provide really simple handling for solids

- Sodium bicarbonate precipitates inside shell
- Water is expelled
- Shrink wrapped solids are all identical





## Three dramatic improvements

- Encapsulation to control solids and speed capture
- Catalysts to further speed capture
- Automatic water exclusion for slurries

But will it work in flue gas? Again water is the key – it is always present.

# Our encapsulated carbonate/bicarbonate swing is activated by water added from flue gas



# On heating, CO<sub>2</sub> pressure is *higher* than water due to sublimation from the solid



## Minimum equilibrium water content is a function of desorption temperature



# Let's review the cycle:

Bed Charging

Cycles

 Capsules are dried after production to precipitate a dry, encapsulated sodium carbonate.



Heat with indirect steam

3. Heat to 105°C, desorb CO<sub>2</sub> at 3.8 bar. Capsules revert to dry, encapsulated sodium carbonate.



## What about.....

#### SOx and NOx

Permanently absorbed – potential for fertilizer use

### Lifetime of capsules

- > >100 cycles (thermal testing to date)
- Abrasion expected to be small, testing underway
- Limited by SOx and NOx in some cases

## Cost of capsule production

- Estimated \$0.10/lb (mostly capsule wall material)
- For 100 cycle lifetime, capsule cost \$2/ton CO<sub>2</sub> captured

## Size of facility

Larger footprint than amine stripper

## What is needed next?

- Material optimization
  - Minimal abrasion
  - Good fluidization
  - Recycling when SOx or NOx build up
- Improved kinetics (always!)
  - Crystal seeding
  - Minimum capsule wall
- Bench scale process evaluation

# Engineering a truly low-energy capture system appears possible

- ✓ Desorption enthalpies ¼ of current solvents
- ✓ Minimal water evaporation
- ✓ Optimal for coal or natural gas
- Environmentally friendly materials



Absorption will be slower