

ION Novel Solvent System for CO₂ Capture FE0005799

Nathan Brown ION Engineering

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013

Presentation Outline

- ION Advanced Solvent Background
- Project Overview
- Technology Fundamentals
- Progress & Current Status
- Plans for Future Commercialization
- Acknowledgements

ION Engineering Background

Mission Statement:

Develop new solvents and processes for <u>economic</u> removal of CO₂ from industrial emissions.

Markets:

- Coal-fired flue gas
- NGCC-fired flue gas
- Sour gas processing

1st & 2nd Generation CO₂ Capture

ION CO₂ Capture Technology

2nd Generation - Adv. Solvent

- <u>Non-Aqueous Solvent</u>
 <u>Matrix</u>
- Enables ION to...
 - Manipulate physical and chemical solvent properties
 - Impact reaction rates, extent of reaction & thermal requirements
- Solvents are H₂O miscible & tolerant

ION Solvent Process

- 6
- **Retrofit** for 1st generation aqueous amine processes
 - Utilize existing process equipment & capital investments
- Compatible with aqueous amine CO₂ capture processes
- Leverage existing know-how, R&D and technology

Advantages & Challenges

<u>Advantages</u>

- Regeneration energy
- Circulation rates
- Auxiliary load
- Make-up water
- Established engineering process

<u>Challenges</u>

- Overall capture costs
- Access to CO₂ utilization sites
- Availability of project financing
- Market demand
- Regulatory pressure

ION Advanced Solvent Project Overview

- 36 month project (Oct. 2010 Sept. 2013)
- Goal: Determine if ION's solvent has the potential to meet DOE performance objectives
- \$6.5M total project funding
 - >\$4.8M DOE
 - >\$1.6M ION (25% ION and partners)

Goals and Objectives

9

Primary Project Goal:

Determine if ION's solvent process can achieve > 90% CO_2 capture with < 35% increase in COE

Primary Objectives:

- Physical & chemical property analyses
- Steady-state testing
- Techno-economic analyses

Scope of Work & Project Status

Techno-Economic Evaluation

2013

As of 6/30/2013:

- The Program is >95% complete.
- Final data analysis and report preparation remaining.
- The Program has advanced from TRL 3 to TRL 5.

Testing at ION

Chemistry

- Solvent screening and development
- Physical and chemical property analytics

ION Lab Pilot

- Simulated Flue Gas
- Steady state testing
- 0-180 slpm gas; 6-12 gph liquid

Simulations (Aspen Plus)

Regeneration energy

Testing at EERC

EERC CTF Facilities

 550,000 Btu/hr (0.25 MW) multi-fuel capability

ION Testing Program at EERC

- Actual flue gas
- Measurement of heat input required for solvent regeneration
- Performance Benchmarking Direct comparison to Aq-MEA

Results from 72 hr test at EERC

Economic Simulation & Analysis

Economic Analysis from EERC

	Base Plant Case 9	MEA Case 10	MEA EERC	ION	ION % Change vs EERC MEA
тос	\$1,160,000	\$2,090,000	\$1,910,000	\$1,700,000	11%
OC _{FIX}	\$33,700	\$56,200	\$53,200	\$44,000	17%
OC _{VAR}	\$22,200	\$39,400	\$37,100	\$30,100	19%
Fuel	\$77,800	\$109,000	\$105,000	\$92,300	12%
COE, \$/MWh	\$64	\$108	\$100	\$88	12%
ICOE, %	NA	69%	57%	37%	35%
\$/ton CO ₂	NA	\$45	\$39	\$27	31%

Performance factors used for adjusting Aspen-Based model for ION solvent: L/G Ratio: 0.75, Regeneration energy: 0.57 relative to EERC MEA

Overall Plant Performance

	Case 9	Case 10	ION	ION vs. Case 10
Net Power, kWe	550,000	550,000	550,000	
Total Auxiliaries, kWe	33,000	123,000	74,000	(49,000)
Total Power, kWe	583,000	673,000	624,000	(49,000)
Net Plant Efficiency, HHV	37%	26%	31%	5%
Coal Consumption, (ton/yr)	1,920,000	2,690,000	2,270,000	(420,000)

Slipstream Development Pathway

Initiate 0.5-2 MW Post-Combustion Slipstream Project in 2013

Commercialization Pathways

Scale-Up Potential

- 19
- Reduced engineering, design & operation risk
 - > Established Process
- Ability to remain competitive & affordable for low margin markets
 - Process improvements relative to ION solvent are likely but not required
- Short-term supply chain bottlenecks are not anticipated
 - Chemicals are produced in sufficient quantities for scaleup & initial commercialization

Program Acknowledgments

Funding Sources

- > DOE/NETL
- > University of Alabama
- ≻ EPRI
- ➤ CCP3

• R&D Partners

- > University of Alabama, Dr. Jason Bara
- > EPRI, Dr. Abhoyjit Bhown
- > WorleyParsons, Jackie Bird
- > CH2M Hill, Michael DeLallo
- EERC, Brandon Pavlish

THE UNIVERSITY OF

ALABA

CO₂ Capture Project (CCP3)

ELECTRIC POWER RESEARCH INSTITUTE

EPC

