Slipstream pilot plant demonstration of an aminebased post-combustion capture technology for CO₂ capture from coal-fired power plant flue gas

DOE funding award DE-FE0007453

2013 NETL CO₂ Capture Technology Meeting Krish R. Krishnamurthy, Linde LLC July 8-11, 2013 Pittsburgh, PA

THE LINDE GROUP

The Linde Group Overview and Carbon Capture Expertise

Linde pursues technology development and solution offer in all three CC pathways

Project Budget: DOE funding and cost share

	Budget Period 1	Budget Period 2	Budget Period 3	Total
Source	Dec 2011 – Feb 2013	Mar 2013 - May 2014	Jun 2014 – Feb 2016	
DOE Funding	\$2,670,773	\$9,367,628	\$2,754,564	\$14,792,365
Cost Share	\$667,943	\$2,341,907	\$688,641	\$3,698,091
Total Project	\$3,337,716	\$11,709,535	\$3,443,205	\$18,490,456

Project spend until end of Budget Period 1
\$3,240,192

Cost share commitments:

Linde: \$3,107,352 BASF: \$ 493,360

EPRI: \$ 97,379

Project Participants

SOUTHERN

COMPANY

4

Partner/ Lead contact(s)		Key Role(s)		
Organization				
DOE-NETL	Andrew P. Jones, Project Manager	-Funding & Sponsorship		
Linde LLC	Krish Krishnamurthy, PI Stevan Jovanovic, Technical Lead	-Prime contract -Overall program management -Operations and testing		
BASF	Sean Rigby (BASF Corp)	-OASE® blue technology owner -Basic design -Solvent supply and analysis		
EPRI	Richard Rhudy	-Techno-economics review -Independent validation of test analysis and results		
Southern Co./NCCC	Frank Morton Michael England	-NCCC Host site (Wilsonville, AL) -Infrastructure and utilities for pilot plant build and operations		
Linde Engineering, Dresden	Torsten Stoffregen Harald Kober	-Basic engineering -Support for commissioning -Operations and testing		
SFPC (Linde Engineering North America)	Lazar Kogan Keith Christian	-Detailed engineering -Procurement and installation		

Project Objectives

Overall Objective

Demonstrate Linde-BASF post combustion capture technology by incorporating BASF's amine-based solvent process in a 1 MWel slipstream pilot plant and achieving at least 90% capture from a coal-derived flue gas while demonstrating significant progress toward achievement of DOE target of less than 35% increase in levelized cost of electricity (LCOE)

Specific Objectives

- Complete a techno-economic assessment of a 550 MWel power plant incorporating the Linde-BASF post-combustion CO₂ capture technology to illustrate the benefits
- Design, build and operate the 1MWel pilot plant at a coal-fired power plant host site providing the flue gas as a slipstream
- Implement parametric tests to demonstrate the achievement of target performance using data analysis
- Implement long duration tests to demonstrate solvent stability and obtain critical data for scale-up and commercial application

- Post-combustion CO₂ capture technology is flexible and can be applied to both new and existing power plants
- Solvent based technologies are today the leading option as they have been commercially applied at large scale in other applications (e.g. natural gas processing, syngas purification)
- Advanced amine based technologies with properly selected solvent can overcome performance and stability issues with the current state-of-the-art reference MEA solvent
- The specific advanced amine based solvent (BASF OASE[®] blue) offers key performance benefits (increased CO₂ loading, reduced regeneration steam requirements, stable in the presence of oxygen and significant potential for lower capital costs)

BASF OASE® blue Technology Development Designed for PCC Applications

Equilibr Kinetics Stability

tested solvents

90 80 THE LINDE GROUP

Fundamental Lab Scale R&D: Advanced Solvents Screening,

Development, Optimization

The Chemical Company

BASF Miniplant, Ludwigshafen, Germany: Solvent Performance Verification

0.45 MWe PCC Pilot, Niederaussem, Germany: Preliminary Process Optimization

7

Niederaussem Pilot Plant: Main results of Phase I

THE LINDE GROUP

of operation, the

low

oxidation rate of OASE

blue was extremely

BASF

The Chemical Company

duration of operation

OASE blue

A A A

Niederaussem Pilot Phase II: Long term testing evaluating materials, solvent degradation and emissions reduction

🗆 • BASF

The Chemical Company

Linde-BASF advanced PCC plant design*

Source: Project DE-FE0007453 Techno-economic analysis of 550 MWe PC power plant with CO2 capture, May 2012.

Comparative PCC Performance Results Linde-BASF vs Reference DOE/NETL Case^{*}

Power plant efficiency improvements and LCOE reductions with Linde-BASF PCC technology

THE LINDE GROUP

Source: Project DE-FE0007453 Techno-economic analysis of 550 MWe PC power plant with CO2 capture, May 2012.

Linde-BASF PCC Plant Design for 550 MWe PC Power Plant

THE LINDE GROUP

Linde

🗆 • BASF

The Chemical Company

 Single train PCC design for ~ 13,000 TPD CO₂ capture
 40-50% reduced plot area

to 180m x 120 m

Linde-BASF experience in large scale carbon capture CO₂ capture in natural gas processing: Re-injection Project - Hammerfest THE LINDE GROUP

World's first industrial project to deliver CO₂ separated onshore from the wellstream back offshore for re-injection into a reservoir

- Partnership with StatoilHydro Petroleum
- Melkoya island near the town of Hammerfest, Norway
- CO₂ sequestration and re-injection integral part of the Hammerfest LNG project. Linde performed design, EPC and commissioning
- —One dedicated well for CO₂ storage in a sandstone formation sealed by shale cap.
- Re-injection started in April 2008
- BASF's OASE[®] purple process used in CO₂ capture

700,000 tpa CO₂ capture and re-injection (part of world scale LNG project, Snøhvit, Norway)

Project schedule and milestones: Budget Period 1

ID	0	Task Name	Qtr 4, 3	2011	Qtr 1, 201	2 Gtr 2, 2	012	Qtr 3, 2012	Qtr 4, 2012	Gtr 1, 2013	
1		1. Project management and planning	1/1 🧲			•					
2		a. Submit project management plan			•	2/29					
3		b. Conduct kick-off meeting	1/15 ┥	11/15	5						
4		e. Host site agreement executed							lo/31 🔶		
5		2 Techno-economic evaluation on a 550 Mwel power plant	12/	1 👝		3/30					
6		2.1 Basis and scope for power plant with CO2 capture and compression	12/	1 💳	12/29						
7		2.2 Detailed design of the power plant		1/3	1/3	1					
8		2.3 Economic analysis of the power plant with CO2 capture and compression			2/1 🪈	3/29					
9		c. Complete initial techno-economics analysis on a 550 MWe power plant				or al					
10		3 Pilot plant design optimization & basic design	12/	1 🚃			5/3	1			
11		3.1 Solvent selection and basic amine process design	12/	1 💳	12/29						
12		3.2 Parametric design optimization and confirmation of design basis	12/	1 💳	1/3	1					
13		3.3 Basic design package of the pilot plant			2/1 🪈		5/3	1			
14		d. Complete basic design and engineering of the 1 MWe pilot plant to be tested at the NCCC						6/29			
15		4. Pilot plant system design and engineering			2/1 🗲					12/28	
16		4.1 Preliminary engineering studies			2/1 🚞		5/3	1			
17		4.2 Process design review and HazOP				6/1			9/28		
18		4.3 Detailed design and engineering				6/1			10/31		
19		4.4 Development of equipment packages							11/1 🚞 11	/30	
20		4.5 Site design, engineering and foundations specification				6/1	Č		11	/29	
21		5. Pilot plant cost and safety analysis				6/1			· ·	2	2/2
22		5.1 Preliminary pilot plant ES&H assessment				6/1			10/30		
23		f. Complete initial EH&S Assessment							4 10/31		
24		5.2 Transportation and lifting study							11/1	2	2/2
25		5.3 Cost estimation and updated pilot plant cost build up						10/1		1/30	
26		g. Complete pilot plant engineering and cost analysis for the 1 MWe unit to be tested at NCCC								of 1/31	
27		Go - No Go decision to build pilot plant								•	2/2

Budget Period 1 tasks successfully completed on time and on schedule

Project Schedule and Milestones: Budget Period 2

Budget Period 2 tasks initiated in March 2013 and are currently in progress

Detailed engineering timeline: Key dates

Jan-12	Feb-12	Mar-12	Apr-12	May-12	Jun-12	Jul-12	Aug-12	Sep-12	Oct-12	Nov-12	Dec-12
			- Design r	eview							
			- PSR 1 ar	าd 2							
			- Hazop								
						- 60% mod	lel review				
- Evaluate	optimum	layout				- Equipme	nt packag	es			
										- Vendor s	selection
				- 3-D mod	el					- Cost com	npilation
				- 30% mod	el review					- 90% mod	lel review
				- Update F	&ID (Hazo	op actions)				- PSR 3	
								- Module	package		
								- RFQ to v	vendors		

PSR: Process Safety review; P&ID: Process and Instrumentation Diagrams; RFQ: Request for quotes; Hazop: Hazard and operability study

Task 3: Design Selection Pilot Plant Layout

3D Model of NCCC site with Linde-BASF Pilot Plant

3D Model of Linde-BASF Pilot Plant modular design (3 level structure)

Project progress: Key Project Milestones (Budget Period 1) Status

THE LINDE GROUP

Budget Period 1 (Dec. 1, 2011 - Feb. 28, 2013)

- Submit project management plan (03/09/2012) \checkmark
- Conduct kick-off meeting with DOE-NETL (11/15/2011) $\sqrt{}$
- Complete initial techno-economic analysis on a 550 MWel power plant (05/04/2012) $\sqrt{}$
- Complete basic design and engineering of a 1 MWe pilot plant to be tested at NCCC (06/20/2012) \surd
- Execute host site agreement completed 01/09/2013 \checkmark
- Complete initial EH&S assessment Completed 12/14/2012 \checkmark
- Complete detailed pilot plant engineering and cost analyis for the 1 MWe pilot plant to be tested at NCCC Completed by 02/15/2013 \checkmark

Project continuation request to proceed to Budget Period 2 was presented to DOE-NETL on Jan 14, 2013 and was accepted.

Key design and engineering features and decisions

- Joint design basis development (Linde/BASF and SCS/NCCC) for the nominal 1 MWe pilot plant
- Leveraged Niederaussem pilot plant experience for early design selection decision on target solvent, pilot plant preliminary sizing, process control and analytical sampling and measurement
- Pilot plant maximum testing capability to 30 TPD CO2 or 1.5 MWe equivalent confirmed utility availability with some upside margins
- Integrated modeling approach for detailed engineering start with the existing NCCC facility model with tie-in points defined and integrated into pilot plant model to avoid conflicts in build phase
- Equipment and module packages sent to multiple vendors and vendor selection performed based on cost, capability and eagerness for involvement in project
- Concrete column sections evaluated but determined to impact project timeline significantly currently allowing for future swapping the SS bottom section of absorber with concrete section.
- Current pilot plant equipment procurement and build schedule (BP2) requires BP2 timeframe extension by 3-months. No cost time extension agreed with DOE-NETL.

Status against Budget Period 1 decision point success criteria

Decision Point	Basis for Decision/Success Criteria	Status
	Successful completion of all work proposed in Budget Period 1	Completed
	Demonstrate a 10% reduction in capital costs with Linde-BASF CO2 capture process	30.5 to 34.7% for PCC and 16.6 to 17.3% for integrated power plant
Completion of	Demonstrate a LCOE increase of less than 65% over the baseline	62.2% and 58.8% for 2 options considered
Budget Period 1	Submission of an Executed Host Site Agreement	Completed
	Submission of a Topical Report – Initial Techno-Economic Analysis	Completed
	Submission of a Topical Report – Initial EH&S Assessment	Submitted
	Submission of a Topical Report – Detailed Pilot Plant Engineering and Cost Analysis	Submitted
	Submission and approval of a Continuation Application in accordance with the terms and conditions of the award	Submitted & approved by DOE-NETL

Progress on procurement of pilot plant equipment, modules and site installation contract (Linde Engineering – North America, formerly SFPC)

THE LINDE GROUP

Item	Progress/Accomplishments to date	Key activity planned for completion	
Heat Exchangers	 Production & testing/inspection completed Shipped to module fabricator 	- Installation on modules	
Pumps	 Production & perf. testing completed Performance testing & acceptance 	- Installation on modules	
Columns and pressure vessels	 Absorber & stripper final drawing complete and approved for production 	 Produce, inspect and ship to site (Jan 2014) 	
	- Other pressure vessels produced	- Ship vessels to module fab.	
Column internals	 Order placed. Final drawings complete & approved for production. 	- Produce & ship for assembly in column	
Modules	- Order finalized with design updates	- Finish module assembly	
	- Structural steel assembly in progress	- Ship to site (Dec 2013)	
Site installation contract	- Contractor finalized and terms agreed	- Construction team mobilization at site (Oct. 2013)	
Instruments, control valves,	- Order placed for all items	- Install on modules	
analyzers and other	- Several items shipped to module fab.	- Selected items direct to site	

Specification and Purchase of Process Equipment for the Pilot Plant

Heat Exchangers

- Order placed for all HX
- Produced by vendor
- Tested & inspected at vendor site
- Shipped to module fabricator

Plate frame Heat Exchangers

Process Pumps

Process and Cooling Water Pumps

- Order placed for all pumps
- Produced by vendor
- Tested & inspected at vendor site
- Shipped to module fabricator

Module fabrication and installation in shop (Red Bud, IL)

Steel structures in shop fabrication

Accomplishments to date (Module):

- 1. Detailed specifications and 3-D models of the module packages completed.
- 2. Purchase orders completed and vendor packages received and reviewed.
- 3. Modules are currently in fabrication.

Module installation & Assembly

Planned work by module fabricator:

- 1. Complete structural assembly.
- 2. Install equipment and piping, instruments, electrical etc.
- 3. Test fit and inspection.
- 4. Shipment to site scheduled for Dec. 2013.

NCCC site preparation to accept pilot plant

THE LINDE GROUP

Rebar Placement

Accomplishments to date (SCS at NCCC site):

- Civil design engineering completed. 1.
- 2. Micro-pile installation, form and pouring foundation completed.
- 3. FRP flue gas header designed & installed.
- 4. Sump pump, flue gas blower, pre-scrubber packing and internals purchased.

Foundations and Slab Complete

Planned work by SCS (July 2013 to Feb 2014):

- Install epoxy coating on slab and sump pumps. 1.
- Install blower and pre-scrubber internals and 2. test performance.
- 3. Install solvent system modifications.
- 4. Install new impeller for demin water pump.

Key Project Milestones (Budget Periods 2 and 3)

Budget Period 2 (Mar. 1, 2013 - May 31, 2014)

- Complete purchase orders and fabrication contracts for the 1 MWe pilot plant (06/30/2013)
- Complete shop fabrication of equipment and modules and associated engineering checks (12/15/2013)
- Complete site preparation and foundation installations at NCCC to receive pilot plant (11/15/2013)
- Complete installation of the 1 MWe pilot plant at NCCC (02/28/2014)
- Mechanical completion of 1 MWe pilot plant at NCCC (05/28/2014)

Budget Period 3 (Jun. 1, 2014 - Feb. 28, 2016)

- Complete pilot plant start up and demonstrate plant operation at steady state (08/31/2014)
- Develop pilot-scale parametric test plan (09/30/2014)
- Complete 1 MWe pilot-scale parametric tests (02/28/2015)
- Develop pilot-scale long duration test plan (03/31/2015)
- Complete 1 MWe pilot-scale long duration tests (11/30/2015)
- Complete updated techno-economic analysis (01/31/2016)
- Complete updated EH&S assessment (02/28/2016)

Acknowledgement and Disclaimer

Acknowledgement: This presentation is based on work supported by the Department of Energy under Award Number DE-FE0007453.

Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Thank you for your attention!

Project DE-FE0007453 2013 NETL CO₂ Capture Technology Meeting Krish R. Krishnamurthy, Linde LLC July 8-11, 2013 Pittsburgh, PA

THE LINDE GROUP

