

ENERGY FRONTIER RESEARCH CENTER

for gas separations relevant to clean air technologie

new materials for capture...

new methods to characterize...

new ways to compute...

new ways to communicate...

new materials for capture...

new methods to characterize...

new ways to compute...

"MOF-5"

"MOF-5"

Prof. Omar Yaghi LBNL and Dept. of Chemistry, UCB

MTV-MOFs: MOFs with multivariate organic linkers

MTV-MOF-5 structure with eight different functionalities

Prof. Omar Yaghi LBNL and Dept. of Chemistry, UCB

MTV-MOFs: MOFs with multivariate organic linkers

MTV-MOF-5 structure with eight different functionalities

❖ Certain MTV-MOFs have better H₂ and CO₂ adsorption properties than MOFs with a single type of linker. Deng. et al. Science 2010

Prof. Omar Yaghi LBNL and Dept. of Chemistry, UCB

MTV-MOFs: MOFs with multivariate organic linkers

❖ Certain MTV-MOFs have better H₂ and CO₂ adsorption properties than MOFs with a single type of linker.

Deng. et al. Science 2010

Apportionment matters

Apportionment matters

Apportionment matters

Mg₂(2,5-dioxido-1,4-benzenedicarboxylate)

"Mg-MOF-74"

CO₂ has strong affinity for open metal sites, Mg²⁺

Mg₂(2,5-dioxido-1,4-benzenedicarboxylate)

"Mg-MOF-74"

CO₂ has strong affinity for open metal sites, Mg²⁺

Berend Smit

Blandine Jerome

Brett Helms

David Luebke

Frantisec Svec

Giulia Galli

Hongcai (Joe) Zhou

Jeff Kortright

Jeffrey Long

Jeffrey Neaton

Jeffrey Reimer

Laura Gagliardi

Maciej Haranczyk

Omar Yaghi

Simon Teat

Ting Xu

High-Throughput Discovery of Robust Metal-Organic Frameworks for CO₂ Capture

Jeffrey A. Reimer,⁴ Tae-Hyun Bae,^{1,2} Adam H. Berger,³ Joseph Chen,⁴ Justin J. Dutton,⁵ Kuldeep Jariwala,² Jihan Kim,² Sean Kong,⁴ Li-Chiang Lin, Richard L. Martin,⁶ Jarad A. Mason,¹ Thomas M. McDonald,¹ Ken J. Micklash,⁵ Roger Sathre,⁷ Kenji Sumida,¹ Joseph A. Swisher,^{2,4} Abhoyjit S. Bhown,³ Maciej Haranczyk,⁶ Steven Kaye,⁵ Jeffrey R. Long,^{1,2} Eric Masanet,⁷ Berend Smit ^{1,2,4}

¹Department of Chemistry, University of California Berkeley, ²Materials Sciences Division, Lawrence Berkeley National Laboratory, ³Electric Power Research Institute (EPRI), ⁴Department of Chemical and Biomolecular Engineering, University of California Berkeley, ⁵Wildcat Discovery Technologies Inc., ⁶Computational Research Division, Lawrence Berkeley National Laboratory, ⁷Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory

Tuesday, July 9, 2013 - Grand Station I & II

5:00 p.m. Poster Session/Reception – Grand Station III

a dizzying array of possibilities...

a dizzying array of possibilities...

a dizzying array of possibilities...

 $Cu_3[(Cu_4CI)_3(BTTri)_8]_2 \cdot xH_2NCH_2CH_2NR_2$

