

Development Novel Carbon Sorbents for Carbon Dioxide Capture

2013 NETL CO₂ Capture Technology Meeting July 8-11, 2013, Pittsburgh, PA.

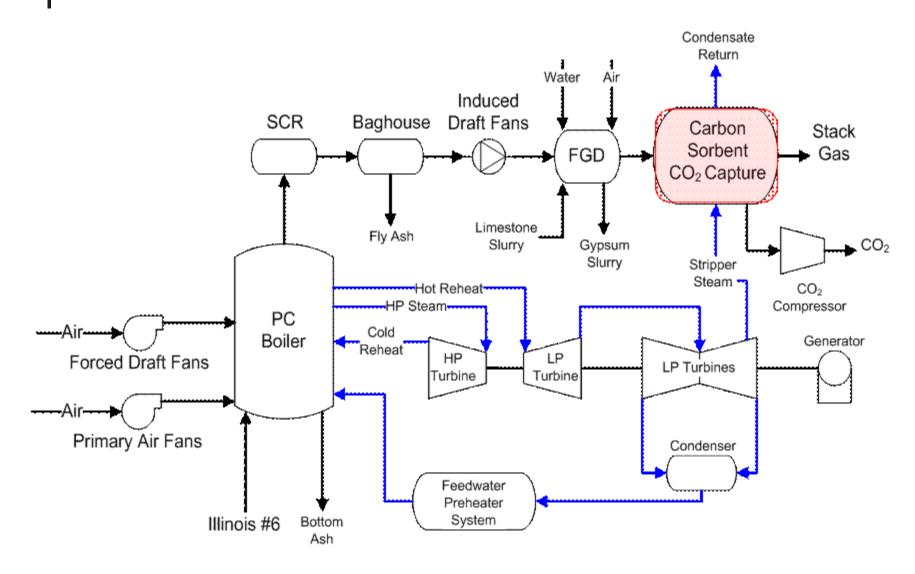
Project Overview

Participants:

- SRI International, Menlo Park, CA
- ATMI, Inc., Danbury, CT
- National Carbon Capture Center
- University of Toledo, OH
- DOE-National Energy Technology Center

Period of Performance:

■ 10-1-2008 through 11-30-2013


Funding:

- U.S.: Department of Energy: \$1.95 million
- Cost share: \$0.6 million
- Total: \$2.65 million

Project Objectives

- Validate the performance of novel carbon sorbents for CO₂ capture on a bench-scale system for post-combustion applications.
- Perform parametric experiments to determine the optimum operating conditions.
- Evaluate the technical and economic viability of the technology.
- Field Test at the bench-scale level with an actual flue gas from a PC-fired boiler.
- Pilot-scale testing in a future phase

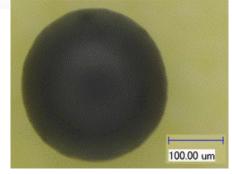
Block Flow Diagram

Basic Principles

- Adsorption of CO₂ from flue gas on a selective and high capacity carbon sorbent.
- Ability to achieve rapid adsorption and desorption rates (no solid state diffusion limit).
- Minimize thermal energy requirements.
- Ability to produce pure CO₂ stream suitable for compression and pipe line transportation.
- A continuous, falling micro-bead sorbent reactor geometry integrates the adsorber and stripper in a single vertical column
 - Provides a low pressure drop for gas flow and minimize physical handling of the sorbent.

Sorbent – Chemical Properties

- High CO₂ capacity:
 - The sorbent has a high capacity for CO₂ adsorption (20 wt% at 1 atm CO₂) and good selectivity for CO₂ over other flue gas components.
- Rapid adsorption and desorption rates:
 - The adsorption of CO₂ occurs on the micropores of the sorbent with very low activation energy (<5kJ/mole), allowing rapid cycling of the sorbent.
- Low heat of adsorption and desorption:
 - A relatively low heat of sorption (26 to 28 kJ/mole).
- High hydrothermal stability:
 - Direct heating with steam can be used for CO₂ desorption.

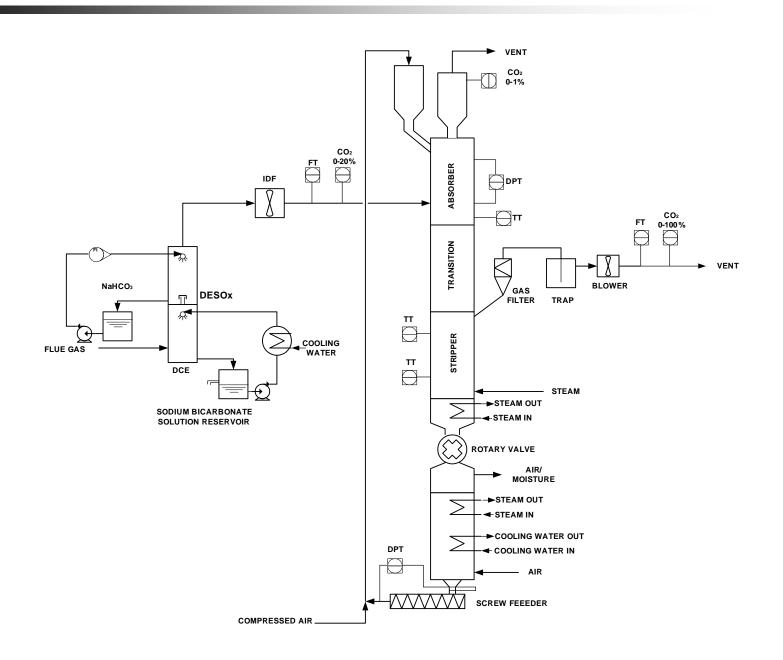

Sorbent – Physical Properties

Mechanical robustness for long lifetime:

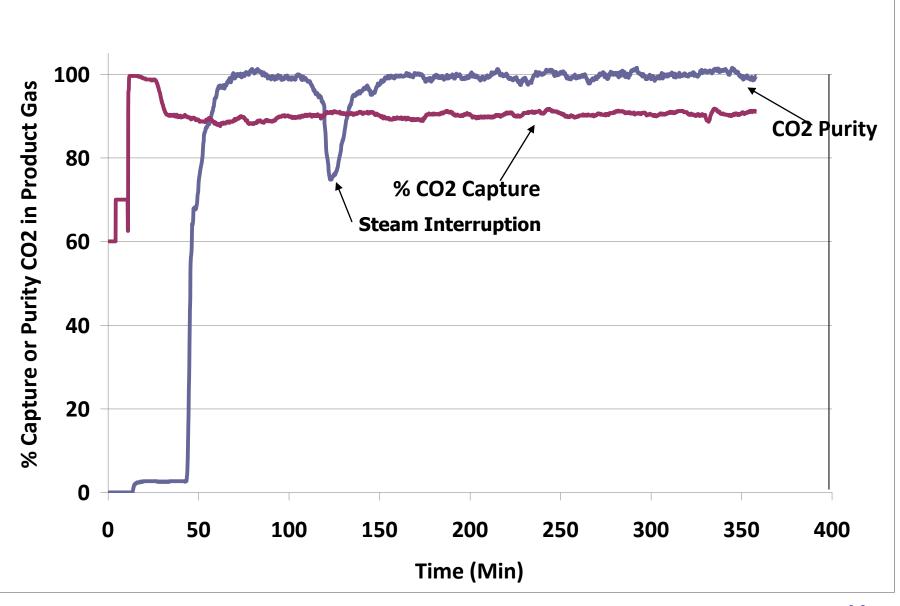
- Hard and attrition resistant; Unusually tough for a high surface area (1600 m²/g) porous solid.
- ASTM Test D-5757: Attrition resistance very high.
- Field test for 7000 cycles No noticeable attrition.
- Spherical morphology of the sorbent granules:
 - Sorbent spheres (100 to 300 μm) allows a smooth flow.
 - This free-flowing, liquid-like characteristic allows the use of commercially available structural packing.

Low heat capacity:

- The low heat capacity of the sorbent (1 J/g/K) and low density (1 g/cm³) minimizes the thermal energy needed to heat the sorbent to the regeneration temperature.
- High thermal conductivity:
 - The thermal conductivity of 0.8 W/m-K enables rapid thermal equilibrium between the sorbent surface and interior.

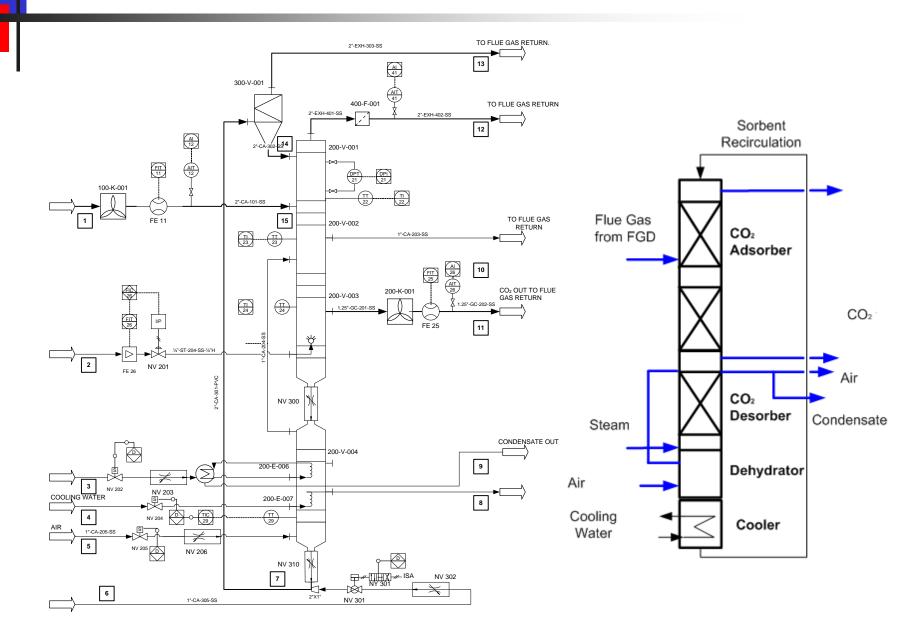

Summary of Previous Reported Results

- Demonstrated an unique sorbent and a reactor geometry for CO₂ capture under simulated flue gas conditions in a 1000-cycle test:
- Developed an unique reactor system
 - Integrated absorber-desorber geometry
 - Minimize solids handling
 - Minimize heat exchanger requirements.
- Performed a 135 h test with a flue gas from a coal-fired boiler at the University of Toledo
- The system was able to reduce the CO₂ level from 4.5% to <0.05% (fully regenerated sorbent).
- We achieved steady-state operation with 90% capture efficiency with >98% CO₂ purity in the product gas.
- Sorbent flow: Smooth!; Typical cycle time: ~1 min.
- No significant operational issues were observed (except for cold-weather related problems – not process related).


Operation at UT

- The system was operated during the day time from 8 AM to 7 PM, about 6 days a week for one month (including shake-down runs).
- The flue gas flow rate was about 200 standard liters/min.
- CO₂ concentration: 4.5% v/v
- SO_2 concentration: 60 ppm reduced to ~1 ppm with the use of a FGD with sodium bicarbonate.
- NOx control was not practiced.
- Pressure drop across the adsorber: 0.4 inch WC.
- Total hours of operation: 130 hours (7,000 cycles)

Schematic Diagram of the System at UT


CO2 Capture Efficiency and Product Gas Purity

Objectives of Testing at NCCC

- Testing with a flue gas from a PC-fired boiler.
- Test goal: 150 h of continuous operation;
 1000 h of total operation.
- Parameters to be tested:
 - Effect of flue gas velocity;
 - Effect of flue gas contaminants;
 - Materials of construction with coupon testing;
 - Efficiency of thermal recovery.

System for Tests at NCCC

Design of Integrated Reactor for Testing at NCCC

- System Dimensions:
 - 1.5 ft square x 50 ft tall
 - Adsorber: 15-ft tall; Stripper: 15-ft tall
 - Made of stainless steel using HVAC design concept.
- A heat exchanger to recover heat from hot, regenerated sorbent and use it to preheat the sorbent from the adsorber.
- Evaluation of sorbent metering equipment.
- Nominal flue gas flow: 70 cfm.
- Goal: 90% CO₂ and >98% CO₂ purity.
- CO₂ capture capacity: ~1 ton/day.

Section of the Adsorber at SRI

Adsorber Section

Hopper with a Pinch Valve

Support Structure at SRI Pad

Current Status

- Key components are procured.
- Support structure has been fabricated.
- System is partially assembled and will be shipped shortly.
- Safety review has been completed with participants from SRI and NCCC.
- Final agreement with NCCC is expected shortly.
- Installation at NCCC is expected in August 2013.

Challenges in the Field Test

- Timely assembly at the new site
 - Partially assembled sections raised and bolted together.
- Utility connections
 - Flue gas, steam, air, water, and electricity.
 - Most connecting points are flanged.
- Sensor and data acquisition
 - Multiple and redundant temperature and pressure sensors.
- Weather related problems
 - We do not expect cold weather issues experienced at the University of Toledo; heavy rain may be an issue.

Future Plans

Field Testing:

- Field test, at a pilot-scale (1 ton CO₂/h), the process using a flue gas from an operating pulverized coal-fired boiler.
- Technology Transfer
 - SRI and ATMI are in touch with several utility and chemical companies for further development.

Team Acknowledgement

- SRI International
 - Dr. Gopala Krishnan, Dr. Marc Hornbostel, Dr. Jianer Bao, Dr. Jordi Perez, Mr. Anoop Nagar, Dr. Angel Sanjurjo.
- ATMI Inc.
 - Dr. Joshua B. Sweeney, Dr. Melissa Petruska, Dr. Donald Carruthers.
- University of Toledo
 - Dr. Glenn Lipscomb, Mr. Terry Yuecun.
- National Carbon Capture Center
 - Mr. Frank Morton, Mr. John Carroll.
- DOE-NETL
 - Andrew O'Palko