CO₂-Binding Organic Liquids, Enhanced CO₂ Capture Process With a Polarity-Swing-Assisted Regeneration Battelle
The Business of Innovation

David J. Heldebrant
NETL CO₂ Capture Technology Meeting

Pittsburgh, PA
July 9, 2013

Battelle Memorial Institute

A leader in technology development and laboratory management

- World's largest non-profit R&D organization
- ▶ \$4 billion total revenue
- 20,400 staff (including labs)
- ▶ 30+ scientific user facilities
- Battelle has managed PNNL since 1965 and retains ability to perform commercial business

Project Overview

- Project Team:
 - BPNWD; project lead, materials development, testing
 - Fluor Corporation; process engineering, technology assessment
 - Queens University; PSAR testing, EH&S
- Project Award:
 - DOE funding: 1.99 million/ 30 months
 - Cost share (Fluor): 500k
 - Sub contract (Queens) 130k
 - Project start Oct 1, 2011
- · Project Scope:
 - To advance CO₂BOLs from TRL 3 through 4 through bench-scale testing

Goals and Objectives

Goals

 Further develop and verify the performance of the process combining CO₂ binding organic liquids (CO₂BOLS) with newly discovered polarity-swing-assisted regeneration (PSAR) process.

Objectives

- Develop the CO₂BOLs/ PSAR solvent and process configuration against DOE's carbon capture goals of 90% CO₂ capture and a Levelized-Cost of Electricity (LCOE) increase of <35%.
- Collect necessary additional thermodynamic and kinetic information to develop an optimized process configuration for the CO₂BOLs/ PSAR concept that can be demonstrated at bench scale.
- Conduct a bench-scale demonstration of the technology that includes extended testing for quantifying solvent makeup requirements, by-product formation, and equipment corrosion.
- Use bench-scale testing data to make robust energy and LCOE predictions for a full-scale system, using Aspen Plus™ to model the system.
- Quantify large-scale EH&S impacts for the technology.

Project Schedule and Tasks

- **BP 1** (Oct 2011-Dec 2012)
 - 1. Project Management
 - 2. Initial techno-economic assessment
 - Full process description and analysis
 - Cost estimates
 - Measurement of missing data
 - Revise technology performance targets
 - 3. Bench-scale design and retrofits for PSAR
 - Solvent scale up of two candidate BOLs
 - Retrofit equipment for PSAR
- **BP 2** (Mar 2013-Jun 2014)
 - 4. Bench-scale testing
 - Shakedown testing
 - Bench-scale testing on liquid PSAR and solid PSAR
 - 5. Full technology assessment

Our System: CO₂BOLs

- "Water-lean" organic switchable ionic liquid solvent system
- Reduced heat duty from boiling and condensing less water
 - Water balance established
 - Optimal water level in circulating solvent estimated
 - (~5 wt. % water confirmed by simulation)
- Designed as a direct solvent replacement
- Heat of solution -80 kJ/mol

CO₂BOL Performance

- Viscosity is two orders of magnitude less than previous 2nd Gen CO₂BOLs
- Water does not precipitate bicarbonate salts
- Viscosity with 10% water (worst case loading) has a minor impact
- Further reduction in viscosity needed (20 cP maximum operating viscosity targeted)
 - Molecular refinement underway
 - Diluents under investigation

This team recognizes water-free and water-lean solvents all face this challenge of viscosity

Polarity Swing Assisted Regeneration (PSAR) Concept

- Unique to switchable ionic liquid-like systems
 - PSAR inoperable for water-based or conventional IL systems
- Anti-solvent addition enables lower temperature stripping
 - Used in combination with thermal heating to release CO₂

CO₂ Loading Profiles: Addition of Anti-Solvent Changes Equilibrium Loading of CO₂

Energy. & Env. Sci. (2013), 6, 2233 - 2242

Thermodynamic Model

$$2 CO_2 + 2 BOL \leftrightarrow BOLCO_2^+ + BOLCO_2^-$$
 (1)
 $H_2O + BOL + CO_2 \leftrightarrow BOLH^+ + HCO_3^-$ (2)

- Separate charges needed for the zwitterionic CO₂BOL-CO₂ ionic species for Aspen Plus to enable the Born term
 - Accounts for the effect of the ionic strength and the solvent dielectric constant
 - Predicts the effect of the low-dielectric-constant AS to reduce the mixed solvent's complexation of CO₂
 - Model under continuous revision as new data becomes available

Energy. & Env. Sci. (2013), 6, 2233 - 2242

Phase Behavior of CO₂BOL and Antisolvent

- Miscibility between either CO₂lean BOL or CO₂-rich CO₂BOL with antisolvent
- Cooling below T_{miscibility} promotes phase separation

Temperatures of miscibility for 50 mol% mixtures of various ASs in CO₂-lean (A)

Antisolvent	Chain Length	T _{miscibility} (°C)
Heptane	7	> 30
Decane	10	38
Dodecane	12	39.3
Hexadecane	16	62

PSAR Conceptual Configuration

Similar to aqueous amine systems albeit with coalescing tank and antisolvent loop

PSAR Impacts On CO₂BOL Reboiler Heat Duty & T_{Regen}

Heat rate and regeneration temperature as a function of antisolvent (hexadecane) loading

- T_{regen} drops with increased loadings of antisolvent (72 °C drop at 2 molar equivalents)
- Reboiler heat duty remains unchanged
- Sensitive to water

PSAR May Increase Net Power Output Up to 102 MWe

- For reboiler temperatures that do not require the IP steam temperatures extract power via a let-down turbine before passing the lower temperature steam to the reboiler
- Uses more steam than directly condensing IP steam from the plant power cycle but the power generated more than compensates.

Projected net electric power output for CO₂BOL-PSAR as a function of AS (C16) loading

Antisolvent Loading (Molar Equivalent)	Regeneration Temperature (°C)	Net Electric Power Produced (MWe)	Parasitic Load
0	159	594	25%
0.5	132	603	23%
1	109	621	21%
2	86	637	19%
TBD^1	65	652	17%

¹Based on projections of upper critical solution temperature

Key Findings To Date

- Water management for CO₂BOLs is not too costly
 - High water tolerance of the candidate CO₂BOL determined.
 - No precipitating bicarbonate salts at water loadings as high as 1 molar equivalent (9.5 wt %)
 - Full dehumidification not required (currently assuming a small, 7MWe, refrigeration unit)
- AspenPlus models of anhydrous solvents containing ions are sensitive to the Debeye Hückle term
- Separation of the CO₂BOL from the antisolvent is dependent on temperature & CO₂ loading
 - Enables antisolvent selection flexibility to tailor miscibility
 - Allows lower lean loadings of the CO₂BOL solvent and facile coalescing system design
- CO₂BOL/PSAR allows for a higher net power output than Case 10 by either:
 - Lower T_{Regeneration} enabling a let-down turbine to produce more power
 - 45% lower parasitic power than Case 10 at current 86 °C regeneration temp forecast
 - As high as 51% lower parasitic power if 65°C regeneration temp achieved
 - Or higher stripper pressure at a given T_{regeneration} resulting in reduced CO₂ compression power
 - Analysis underway

Benefits of Technology to the Program*

- The reboiler heat duty for the CO₂BOL process is 57% of NETL Case 10
- PSAR may add an estimated 20% increase in net electric power output over Case 10
- At a given pressure, PSAR lowers the temperature at which CO₂ is released from the rich CO₂BOL (demonstrated 72 °C reduction)
 - Minimizes thermal degradation and evaporative losses of the CO₂BOL solvent
- PSAR decreases COE 17 points compared to the Case 10 baseline (68% versus 85%)
 - Potential for a 21-26 point decrease
- PSAR allows for novel heat integration strategies unavailable to other technologies
 - Retrofit or greenfield potential

^{*} All projections are based on an assumed loaded solvent viscosity at or below 20 cP.

Project Technical & Economic Challenges

- Refined CO₂BOL formulation needed to keep viscosity below 20 cP max operating limit
 - Molecular refinement desired
 - Diluents may be applicable, but may impact PSAR performance
 - Separate/ follow-on programmatic work will likely be necessary
- CO₂BOL material costs are too high (\$35-70/kg)
- Alternate synthesis strategies need to be developed
- Bench-scale validation of process needed for mass transfer coefficients, solvent lifetime
- Validation/optimization of PSAR process under continuous flow conditions
 - Time and efficiency of anti-solvent separation/carryover
 - Antisolvent impacts on absorber performance
 - Cheap, "green" antisolvent alternatives desired

Project Performance and Future Work

Overall Accomplishments

- All Milestones and deliverables have been completed within budget
- All risks have been addressed and mitigated to date
- Completed an initial feasibility study of the CO₂BOL/PSAR process and confirmed economic viability

Future Plans

- Bench-scale testing of the current best-case CO₂BOL solvent and PSAR antisolvent.
- EH&S study of CO₂BOL and degradation products
- Synthesis of less viscous CO₂BOL molecules already identified (as funding permits)
- Development of cheaper synthesis of CO₂BOL solvent
- Final technology feasibility study-facilitated by bench scale results

Beyond BP 2

Testing at slipstream scale

BPNWD's Testing Facilities

- BPNWD's Carbon Capture Laboratory Completed in 2012
- \$2,000,000 in internal investments
- Facilities include wetted wall column, PTx cells & Mobile Bench-Cart, viscometers, 5L synthesis reactor

Specifications:

Column diameter: 1.26 cm Column height: 9.1 cm Gas flow rate: 1-5 slpm Solvent flow rate: 300 ml/min Absorption temperature: 25 - 60 °C Absorption pressure: 1 to 5 bar Gas/Liquid interface area: 37.3 cm² Reservoir capacity: 2 liters Gas analysis: Mass spectrometer

Wetted Wall

5-L Synthesis Reactor

Bench-scale solvent cart specifications:

Max. gas flow rate: 30 slpm 250-300 ml/min Solvent flow rate: Max. temperature: 200 °C Operating pressure: 1 to 5 bar Structured packing: Sulzer EX Packing height (absorb/strip): 83 cm / 55 cm Packing diameter: 3.2 cm 108 cm Bed height: Reservoir capacity: 2 liters

Gas analysis: Mass spectrometer

Bench-Scale Portable Cart

Acknowledgements

- Funding:
 - US Department of Energy Office of Fossil Energy DE-FC-FE0007 466
 - NETL PM: Andy Aurelio
- Battelle Pacific Northwest Division:
 - Phillip Koech
 - Charlie Freeman
 - Mark Bearden
 - Feng Zheng
 - Igor Kutnyakov
 - Andy Zwoster

The Fluor Corporation

- Paul Mathias
- Satish Reddy
- Kash Afshar
- Arnie Smith
- Mukund Bhakta

Queens University:

- Philip Jessop (Queen's University)
- Tamer Andrea (Queen's University)