

Ramgen Supersonic Shock Wave Compression Technology

2012 NETL CO₂ Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA

July 9, 2013

Aaron Koopman Ramen Power Systems

Company Background

- Privately-held R&D company founded in 1992
- Focused on unique applications of proven supersonic aircraft technology

- -Supersonic air & gas compressors
- -High velocity vortex combustor
- -Supersonic expander

-Product embodiments

- -High Pressure ratio, high efficiency CO₂Compressor
- -High Efficiency ISC Engine

Project Overview

Objectives and Funding

Overall CCS Project Objectives:

- Compressor Project: Development and demonstration of analysis tools to design high-efficiency, low-cost CO2 compression using supersonic shock wave technology to significantly reduce capital and operating costs associated with carbon capture and storage

• Overall Project Performance Dates

-Start: August 1, 2009

-End: June 30, 2014

Funding

- -\$ 50M Total Compressor and Engine DOE Funding
- -\$ 29.7M Private funding including Dresser-Rand contribution

• Project Participants

- Dresser-Rand: Engineering support and host to Olean CO2 test facility

Dresser-Rand Investment in Ramgen

- Dresser-Rand invests in Ramgen's "game-changing technology"
 - Support on-going CO2 compressor development
 - Satisfy DOE matching funds requirement
 - Consistent with strategy to be technology leader
 - Extend served market into Electric Utility industry
 - Investment to:
 - Fund development & demonstration
 - Obtain an option to purchase assets
- Dresser-Rand is consistently ranked among top three manufacturers in its served markets
 - Turbomachinery
 - Reciprocating compressors
 - Steam turbines
- Leading supplier of CO2 compressors
- Global sales & service presence

Ramgen Technology Fundamentals

Compressor

Shock Waves to Supersonic Inlets

Schlieren Photo of Projectile with Shocks

Schlieren Photo of Inlet Center-body and Cowl with Shocks

Normal

Supersonic F-15 Inlet

Rampressor Rotor

RAMGEN POWER SYSTEMS

Typical Rotating Supersonic Flow Path

Rotor Flow Path:

- Three Supersonic Compression Inlet Flow Paths On Disk Rim
- High Efficiency, Compact Compression
- Flow Path Geometry Similar For Different Pressure Ratios
- Combination of Supersonic Flight Inlet & Conventional Axial Flow Compressor Aerodynamics:
 - Rotor Rim Radius Change Produces Compression
 - 3 "Blades" (Strakes) Do Minimal Flow Work
 - Axial Inflow/Outflow for the rotor shown

8

Capture Technology Drives Operating Conditions

Ramgen technology works with all capture technologies and can provide heat to regenerate solvents/delivery media

MAN Turbo CO₂ Compressor

• 10-stage 6000 hp

- \$8.0 million ⇒\$1350/hp
- Pr 200:1 ⇒1.70 per stage

• 8-stage 20,000 hp

- \$15.0 million ⇒\$750/hp
- \$23.0 million installed⇒\$1150/hp
- Pr 143:1 ⇒1.86 per stage

Ramgen CO₂ Compressor Targets

- Pr 10+:1 per stage; intercooled
- Smaller physical size
- 40-50% of the installed capital cost
- ~Same shaft input power requirements
- Recover of ~80% of the input Btu at 500°F
 - Improve CCS efficiency
 - Reduce power plant de-rate

LCOE with Advanced Capture and Compression

Technical and Economic Challenges

- Technical challenges Demonstrating targets
 - Test Rig new 10MW closed loop CO₂ systems, components, controls, motor, gearbox, VFD
 - Pressure Ratio/Efficiency not proven until demonstrated in test
 - Maintainability mean time between replacement
 - Turndown key operational consideration efficient operation over changing inlet and outlet plant conditions

• Economic challenges – Realizing reduced LCOE

- Capital Cost lowest costs will involve the integrated design of capture and compression
- Capture heat of compression Each plant has unique opportunities for uses of heat. The system must be integrated into the plant cycle.

12

Project Status

Project Schedule – CO₂ Compressor

- 10 MW Test Facility Complete Fall 2011
- Full Speed Test Rotor Runs Complete Winter/Spring 2012 –10 MW VFD, Motor, Gearbox, Couplings and Bearing Systems validated
- Build 1 compressor testing September 2012 and continuing

 —Demonstrated 7.7:1 pressure ratio and supercritical CO₂ in a single stage
- Build 1 compressor test completion July 2013
- Build 2 compressor design underway September 2013
 - -Oakridge National Laboratory Supercomputer utilized for CFD optimization studies
 - -Flowpath configuration identified
 - -Static hardware in design development
- Build 2 test *Q1 2014*

CFD Development at Oak Ridge National Labs -

Shockwave rotor development greatly accelerated by the ORNL Supercomputers

■ Ramgen executed 200,000 core run to analyze 800 configurations in 18 hours

High Pressure CO2 Compressor Facility

10MW HP CO₂ Compressor Test Stand

- Dresser-Rand Facility, Olean, NY
- 10MW Electric Variable Speed Drive
- Closed loop CO2
- -P1 = 210 psia
- -P2 = 2100 psia

HP CO2 Build 1 Comparison of CFD and Test

	CFD Prediction 210 psia suction	Test Data 6/27/13 135 psia suction
Suction Corrected Mass Flowrate (lb/sec)	84.8	82.5
Bleed Flow-rate (factor from target)	1.0	1.8
Pressure Ratio	8.37	7.74
Discharge Temperature (factor from target)	1.0	.997

Test data thus far is showing very good agreement with pre-test predictions.

Additional testing and mechanical configuration changes are expected to improve matching even further.

CFD/Test Comparison of Efficiency

CFD/Test Comparison of Pressure Ratio

• Measured pressure ratio is 7.74 versus prediction of 8.37

Future Testing and Commercialization

21

Technology Development Roadmap

contacts:

Aaron Koopman aaron.koopman@ramgen.com (425) 828-4919 ext 235

Pete Baldwin
pete.baldwin@ramgen.com
(425)-736-7272 (c)
www.ramgen.com