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Outline 

• Preparation of hydrogen selective membranes using zeolite 

nanosheets. 

• Steam stability of layered zeolites (MCM-22, ITQ-1, RUB-24, 

Nu-6(2)). 

• Modeling and optimization of IGCC plant with membrane 

reactor.  

To develop a technically and economically viable membrane 

for H2 separation from typical water-gas-shift (WGS) mixture 

feeds at high temperatures. 

Objective 
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Layered zeolites with 6-MR pores 

ITQ-1 (Si/Al=∞) MCM-22 (Si/Al=40) 

c 

a 

1 μm 1 μm 

3 



Chemical Engineering & Materials Science UNIVERSITY OF MINNESOTA 

Hierarchical manufacturing of zeolite membranes 

For a Review:  

Mark A. Snyder, Michael Tsapatsis,  

Angew. Chem. Int. Ed. 2007, 46, 7560–7573 

 

Oriented monolayer of crystals 

Membrane 

Nanosheets with high aspect ratio 

(thickness 2.5 nm) 

Layered zeolite 

(thickness ~50 nm) 

c

ba

Exfoliation 

Coating 

Secondary growth 
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Membrane preparation 
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Performance of an ITQ-1 Membrane 

7 

Varoon K., Zhang X., Elyassi B., Brewer D.D., Gettel M., Kumar S., Lee J.A., Maheshwari S., Mittal 

A., Sung c., Cococcioni M., Francis L.F., McCormick A.V., Mkhoyan K.A., Tsapatsis M., 

Science  334 (2011) 72–75. 
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• Steaming conditions: 

• Temperature: 350oC 

• Pressure: 10 bar (95% steam, 5% nitrogen) 

• Samples were analyzed in 21 days intervals for 84 

days 

 

Steaming conditions for ITQ-1 and MCM-22 
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Stability of ITQ-1 and SiCl4-treated ITQ-1 

Beyer et. al., J . Chem. Soc., Faraday Trans. 1, 1985, 81, 2889-2901. 

450oC for 40 min 

bed of zeolite

fritted quartz disk

quartz wool

Flow of nitrogen saturated with 
SiCl4 vapor at room temperature 
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Treating ITQ-1 with SiCl4 to heal structural defects 



Chemical Engineering & Materials Science UNIVERSITY OF MINNESOTA 

Stability of ITQ-1 and SiCl4-treated ITQ-1 

Beyer et. al., J . Chem. Soc., Faraday Trans. 1, 1985, 81, 2889-2901. 

450oC for 40 min 

Si

Si

Cl

Cl Cl

Cl bed of zeolite

fritted quartz disk

quartz wool

Flow of nitrogen saturated with 
SiCl4 vapor at room temperature 
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Treating ITQ-1 with SiCl4 to heal structural defects 
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XRD of ITQ-1 and ITQ-1 treated with SiCl4 at 350oC  

 SiCl4 treatment is effective in improving the hydrothermal stability of ITQ-1 
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ITQ-1 Steamed ITQ-1

200 nm 200 nm20 nm 20 nm

ITQ-1 Steamed ITQ-1

TEM images of ITQ-1 before and after 84 days of steaming 
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TEM images of healed ITQ-1 before and after 84 days of steaming 

200 nm 200 nm

Before steaming After steaming

20 nm 20 nm

After steamingBefore steaming 
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29Si MAS NMR of ITQ-1 and SiCl4 treated ITQ-1 before and 

after steaming for 84 days at 350oC 

Q4 Q4 

ITQ-1 becomes amorphous 

Healed ITQ-1 shows high 

spectral resolution 
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Qn = Si(OSi)n(OH)(4-n) 
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Steam stability of MCM-22 

(Si/Al=40) 
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XRD of MCM-22 steam treated at 350oC  

  MCM-22 keeps its crystallinity. 

  No change in crystal morphology was seen in the SEM pictures. 
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TEM images of MCM-22 before and after 84 days of steaming  

200 nm 100 nm

MCM-22 Steamed MCM-22

10 nm 10 nm

MCM-22 Steamed MCM-22
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29Si and CP/MAS NMR of MCM-22, before and after steaming at 

350oC for 84 days 

Q4  Higher spectral resolution 

can be seen after 

hydrothermal treatment. 
 

  Intensity reduction at -97 

and -99 ppm (defect sites). 

 

σ = -0.6192Ө - 18.68 
G. Engelhardt, R. Radeglia, Chem. 

Phys. Lett. 108 (1984) 271-274. 
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Qn = Si(OSi)n(OH)(4-n) 
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Effect of steaming on textural properties 

a BET surface area from N2 adsorption isotherm. 
b Micropore volume from t-method using N2 adsorption isotherm. 
c Micropore volume using the NLDFT kernel “Ar at 87 K zeolites- silica, cylindrical pore model”. 

 Before steaming After steaming for 84 days 

SBET
 a 

(m2/g) 
Vmicro

b 
(cm3/g) 

Vmicro
c  

(cm3/g)  
SBET

 a 
(m2/g) 

Vmicro
b  

(cm3/g) 
Vmicro 

c  
(cm3/g) 

MCM-22 490 0.163 0.198 340 0.113 0.133 

ITQ-1-900 402 0.138 0.186 13 0 0 

ITQ-1-H900 470 0.160 0.195 110 0.027 0.034 

ITQ-1-580 550 0.182 0.254 158 0.048 0.069 

ITQ-1-H580 521 0.181 0.239 308 0.103 0.142 
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XRD of patterns of Nu-6(2) and RUB-24 zeolites:  

Steamed at 350oC and 10 bar (35% H2O in N2) for 6 months  

Nu-6(2) RUB-24 
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Summary of stability analysis & future work 

• Achievements 

• Systematic studies on the long-term steam stability of zeolites: 

MCM-22, ITQ-1, NU-6(2), and RUB-24 were completed. 

• Healing of defects in the ITQ-1 crystal enhanced its steam 

stability. 

• NU-6(2) preserved its crystallinity after 6 months of steaming 

(35% H2O, 65% N2) at 350oC. 

• Permeation cell construction and its sealing evaluation at high 

temperatures.  

• Future Work 

• Study of membranes’ performance at high temperatures and 

under steaming. 
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Systems Modeling: Objectives and Approach 

• Work done by Dr. Fernando Lima and Prof. Prodromos Daoutidis (UMN) 

• Develop a WGS membrane reactor (MR) model 

• Integrate MR model into IGCC system model 

• Analyze effect of reactor design and membrane characteristics on 

integrated plant performance 

• achieve DOE R&D target goal of 90% CO2 capture (1),(2) 

•  satisfy stream constraints for CO2 capture and gas turbine fuel (H2 rich)(3) 

• quantify process efficiency and power generation 

 

• Perform optimization studies and techno-economic analysis for integrated 

plant 

• Received input from DOE/NETL personnel (John Marano and Jared Ciferno) 

(1) Marano, Report to DOE/NETL (2010) 

(2) Marano and Ciferno, Energy Procedia 1, 361-368 (2009) 

(3) Lima et al., Ind. Eng. Chem. Res. 51, 5480-5489 (2012) 
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MR Modeling Assumptions and Simulation Set Up  

• Assumptions 

• 1-dimensional shell and tube reactor 

• catalyst packed in tube side 

• thin membrane layer placed on surface of tube wall 

• sweep gas flows in shell side 

• plug-flow operation 

• constant temperature and pressure 

• steady-state operation 

• ideal gas law 

 

Composition (1): 

CO = 40.17% 

H2O = 9.27% 

CO2 = 17.50% 

H2 = 31.92% 

Flow configurations 

co-current 

 counter-current 

Simulation conditions  

catalyst type and reaction rate (2) 

reactor dimensions (lab)  

consistent with IGCC specifications 

Model used to perform simulation and 
optimization studies (3) 

(1) Jillson et al., J. Proc. Cont. 19, 1470-1485 (2009)  

(2) Choi and Stenger, J. Power Sources 124, 432-439 (2003) 

(3) Lima et al., Ind. Eng. Chem. Res. 51, 5480-5489 (2012) 
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Integration of MR into IGCC Plant (MATLAB) 

Scale up MR model at steady state 

MR integration downstream of gasifier (1),(2) 

Effect on turbines/heat exchangers 

Steam integration for MR utilization 

24 

(1) Marano and Ciferno, Energy Procedia 1, 361-368 (2009) 

(2) Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997) 

Simulation studies performed 

Novel optimization problem formulation 

minimize cost of membrane as function of 

surface area 

determine optimal operating point that 

satisfies all constraints 
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IGCC-MR Optimization Results: Different Membrane Characteristics 
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IGCC Performance 

Variable 

Nominal 

(SH2/all = 

1000,  

QH2 = 0.2 ) 

Nominal 

Optimal 

Case 1 

(SH2/all = 

1000,  

QH2 = 0.1) 

Case 2 

(SH2/all = 

100,  

QH2 = 0.2) 

6800 4989 7271 4739 

98.54 99.02 99.28 91.13 

47.96 47.55 46.96 47.63 

614.07 617.60 615.00 618.41 

 

 
power generated

HHV energy in coal
 %





  
W  power generated MW





 
C

CO
2

=
carbon captured

carbon in feed
 %





   
2membrane area mmA

QH2 = mol/(s.m2.atm)  
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IGCC-MR Differential Cost Analysis 
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(1) Haslbeck et al., Baseline Report to DOE/NETL (2010) 

(2) Turton et al., Analysis, Synthesis and Design of Chemical Processes (2012) 

Cost comparison between IGCC with and without MR 

Same amount of coal and power generation (≈ 615 MW) 

Cost differences 

larger ASU (IGCC) (1): $291.01 million/30 years 

steam and gas turbines differences (IGCC) (1): $41.53 million/30 years 

extra heat exchangers (IGCC-MR) (2): $3.78 million/30 years 

added MR with Am = 5000 m2 (IGCC-MR): ≈ $5-50 million/lifetime 
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IGCC-MR Differential Cost Analysis 
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(1) Haslbeck et al., Baseline Report to DOE/NETL (2010) 
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IGCC-MR Differential Cost Analysis 
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(1) Haslbeck et al., Baseline Report to DOE/NETL (2010) 

(2) Turton et al., Analysis, Synthesis and Design of Chemical Processes (2012) 

Cost comparison between IGCC with and without MR 

Same amount of coal and power generation (≈ 615 MW) 

Cost differences 

larger ASU (IGCC) (1): $291.01 million/30 years 

steam and gas turbines differences (IGCC) (1): $41.53 million/30 years 

extra heat exchangers (IGCC-MR) (2): $3.78 million/30 years 

added MR with Am = 5000 m2 (IGCC-MR): ≈ $5-50 million/lifetime 

Calculate MR cost to break even in a 30 year period 

Results based on present value of annuity calculation 

 

Lifetime 

[year] 

Cost  

[$/m2] 

1 5,840 

2 11,680 

3 17,520 
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Modeling Conclusions & Future Work 

• Conclusions 

• MR model integrated into IGCC process model in MATLAB 

• Simulation and optimization studies for IGCC-MR plant performed 

• simulation results indicated successful nominal case 

• novel constrained optimization problem formulated and solved 

• Techno-economic assessment of IGCC-MR process completed (MATLAB) 

• MR cost analysis showed break even costs within feasible range 

• Future work (Aspen) 

• Carry out simulation studies for different flowsheet alternatives  

• Perform techno-economic analysis using integrated model 
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