

Status of the <u>Carbon-dioxide Absorber</u> <u>Retrofit Equipment (CARE) Program</u>

2013 CO₂ Capture Technology Meeting

Dr. Andrew Awtry, Principal Scientist, Neumann Systems Group andya@neumannsystemsgroup.com
(719)247-8519

NeuStream® Pollution-to-ProductsTM Systems

Pollutants

- •Sulfur Oxides (SO_x)
- Nitrogen Oxides (NO_x)
- Carbon Dioxide (CO₂)
- Particulates (PM)
- Heavy Metals, Organics

Cement

Plants

>\$1 BILLION revenue from P-to-P from a single 550MW coal plant*

Industrial Products

Gypsum Acid \$2.3M/yr* \$0/yr*

Fertilizer \$12M/vr*

Enhanced Oil Recovery \$867M/yr*

Rare Earth Metals \$59M/vr*

Nitric Acid \$3.8M/vr*

Fertilizer \$5M/vr*

Benefits of High Surface Area Jets for Pollution Control

Side view

View along gas flow

low Gas flow

	Parameter	Benefit		
	High specific surface area: $a_s > 1000 \text{ m}^2/\text{m}^3$; High volumetric mass transfer kinetics, 10 x $K_L a_s$ over conventional systems	High process efficiency; Greatly reduced column footprints		
	Low $\Delta P_{Gas} \sim 1 \text{inWC/m}$; Low $\Delta P_{Liq} = <6 \text{ PSI}$	Reduced hydrodynamic/ auxiliary power		
	Aerodynamic shaped jets	Reduced liquid entrainment in the gas flow		
	Factory fabrication of modular/serviceable units	Standardization/lower cost fabrication; Rapid scaling per customer needs		

Flat Jet Gas-Liquid Contactor

Advantages:

- Reduced absorber volume due higher contact area
- Horizontal (gas flow)
 orientation simplifies
 installation
- Ability for turndown of system
 - Vary gas flow through system 4-8 m/s
 - Turn off stages of absorption

Challenges:

 Maintaining a high contactor surface area AND a manageable parasitic power

CARE Project Overview

Project Objectives

- Design and Fabricate 0.5 MWe Carbon Capture System
 - Demonstrate NSG flat-jet gas-liquid contactor as CO₂ absorber
 - Minimize system parasitic power through efficient design
- Demonstrate
 - 2 month steady-state operation with Multi-Stage Absorber and Stripper
 - 90% CO₂ capture efficiency
- Show unit traceability/scalability to commercial scale

Partners:

- DOE/NETL
- Colorado Springs Utilities (Host Site, Resource Provider)
- EERC (TEA, EH&S, Consulting System Integration)
- Mr Robert Keeth of URS (Consulting Construction/Installation)
- Dr Gary Rochelle and Dr Eric Chen of UT (Consulting Solvent Regeneration)

Project Overview:

Project Status as of May 31, 2013

- Project CARE: \$7,164,392 Federal Funding, started May 2012
 - April 2013: Completed budget period 1 (BP1) Design Phase
 - May 2013: Started BP2 Construction Phase (9mo)
 - Feb 2014: Start date for BP3 Testing Phase (12mo)
- \$2,799,662 costed of project total value of \$9,098,441 (30.8%);
 Cost share currently at value of \$693,132 (24.8%)
- Earned Value Assessment of Project:

DVT Stand

CNSG

- 0.8 m (length) x 0.2 m (width)
 Horizontal Gas, Vertical Jet
 Absorber
- MEA solvent with flash stripper
- Adjustable gas flow: 4–16 m/s
- Adjustable reactor height: 28-79 cm (11-31 in)
- Adjustable jet pressure: 4-12 psi
- Interchangeable jet plate
 - ULFT or LF nozzles
 - Jet spacing of 3 or 4 mm
- CO₂ capture efficiency measured with Testo & FT-IR and CO₂ Mass flow controller
- Demonstrated specific surface area of greater than 400 m²/m³

CARE System Layout

CNSG

Isometric Views

Absorber Unit Absorber Design

Parameter	Value	Units
Stago Width	58.4	cm
Stage Width	(23)	(in)
Stage Height	30.5	cm
	(12)	(in)
Stage a _s	425	m²/m³
Unit Length	2.75	m
	(108.3)	(in)
Capture Efficiency	90%	
Number of Pseudo-Stages	12	

4x Absorbers at 2.75 m each = 11 m Total Length

Absorber Module

Design - 90% Capture of 0.6MW

At CSU's Drake: 2300 SCFM/MW, 12.5% CO₂ and 0.8 atm requires
 11 meters with 12 stages to get the necessary 2.2 sec residence time.

Absorber Module

Design - 90% Capture of 0.6MW

- At CSU's Drake: 2300 SCFM/MW, 12.5% CO₂ and 0.8 atm requires
 11 meters with 12 stages to get the necessary 2.2 sec residence time.
- Using NETL Case 9 Plant: 2007 SCFM/MW, 13.5% CO₂ and 1 atm requires <u>7.6 meters</u> with 12 stages to get the necessary 2.2 sec residence time.
- This absorber moved to the Case 9 plant could scrub 0.9MW at 90%₁₁

Stripper Module

Aspen/Process Flow Diagram

- Hot rich solvent injected through NSG jets
 - 6 rows x 45 LF nozzles at6 psi = 55 gpm
- Cold Rich Bypass crosses with CO₂ gas in HEX, becoming warm rich
- Warm rich solvent sprays onto packing where heat transfer occurs through direct contact of gas/liquid
- Reboiler heat supplied through Stab-in-Bundle HEX

Flue Gas Heat Extraction

- Flue Gas Reheat to 350°F to simulate NETL Case 9 Flue Gas out of the bag house
- 10% (5gpm) cold, rich solvent pulled to low pressure stripping
- Size flue gas HEX to offset vaporization cooling and maintain higher temperatures
- Simple flash stripper for gas/liquid separation – operated at 4 bar
- Modeled lean loading 0.30 mol
 CO₂/mol alk; results in a steam offset of 8%

NOx Removal using O₃

Gas phase oxidation using ozone:

$$2(NO + O_3) \rightarrow 2NO_2 + O_3 \rightarrow N_2O_5$$

- Total NO_X removal demonstrated at 81% on central Pennsylvania eastern bituminous coal (flue gas concentration of 182ppm)
- Need to increase ozone production to achieve higher capture rate

0.5MW CARE Program

CARE Innovations

- NSG nozzles incorporated in FGD, FGD Polish/DCC, CO₂ Absorber, Amine Wash, and Stripper (for heat transfer)
- NOx reduction through O₃
 injection into flue gas
 upstream of SOx scrubber

- Flue gas heat extraction to reduce steam usage
- Custom Stripper configuration to take advantage of the operating properties of the piperazine solvent (developed with Drs. Rochelle/Chen)
- Designed for use with concentrated Piperazine, although system is solvent agnostic and at the very least will be run with MEA solvent

Future Work: 5MW Design

- Defined unit cell as 5 MW
 - WxH: 0.85 m (33.3") x 0.76 m (30")
 - Once 5 MW unit cell performance has been verified; scaling to commercial will have minimal risk utilizing this unit cell.
- 5MW cell:
 - Need 14.5 m of length for 90% capture;
 - Gas velocity is 7. 5m/s
 - Image shows a 2-stage 5 MW unit with
 2.9m length (5x units needed in series).

Traceability to Commercial Design

NSG

- Commercial module can easily be tailored for specific needs:
 - Can support 2 or 3 levels/tiers
 - Each level/tier can support up to 9x 5 MW unit cells
 - A single stage is shown with the maximum number (27x) of 5 MW cells: 135 MW

- Switch in pump type
 - Axial flow pumps are cheaper than split-case, doublesuction pumps

Traceability to Commercial Design

- a) Single-stage, 135 MW unit that utilizes 27x 5-MW unit cells
- b) 10-units stacked in series to achieve the necessary residence time at 7.5 m/s gas velocity for 90% capture of 135 MW flow
- c) A 1-meter (depth)
 FGD/polishing scrubber
 and amine wash added
 to the CO₂ absorber to
 complete the module
- d) 4-135 MW modules in parallel to achieve CO₂ capture of 540 MW

Comparison

Typical Packed Tower vs. NeuStream®-C

- Counter-current liquid/gas
- Tall height requires expensive support structure
- Contactor area is 100-200 m²/m³
- Gas velocities limited to 1-2 m/s
- High pressure drop across packing (1-2 inWC per meter)

- Counter-current liquid/gas
- Horizontal arrangement requires
 significantly less structural support
- Contactor specific surface area of >400 m²/m³ demonstrated
- Acceptable gas velocity up to 7.5 m/s
- Pressure drop of 1inWC per meter of jets at 4 m/s gas velocity

CNSG

Traceability to Commercial Design

- BD3 project information:
 - BD3 is expected to gross approximately 165 MW after boiler upgrade
 - Carbon Capture System expected to operate at 21% parasitic power
 - Net power from BD3 will be approximately 110-115MW
- NeuStream[™]-C system:
 - Designed for 165 MW; utilizing 27x 5-MW cells
 - Estimated 26.5% parasitic power using current performance metrics:
 - Stripper = 16.5%; Compression = 4.3%; Absorber (including FD fan, FGD polish scrubber, CO₂ absorber and Amine wash) = 5.5%;

Energy Audit

Design Performance

			Equivalent power plant 13		135 MW	
	Flow					
Equipment	(GPM)	TDH (ft)	Efficiency	1 1 1	Power (kW)	%
Absorber Recirc 1	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 2	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 3	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 4	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 5	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 6	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 7	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 8	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 9	66728.3	30	0.78	648.100	483.288	0.36%
Absorber Recirc 10	66728.3	30	0.78	648.100	483.288	0.36%
Amine Wash Recirc Pump	35747.3	30	0.75	361.084	269.260	0.20%
FGD Polish/DCC	35747.3	30	0.75	361.084	269.260	0.20%
Solvent Cooling Pump	7500	15	0.75	37.879	28.246	0.02%
Condenser Cooling Pump	7500	15	0.75	37.879	28.246	0.02%
Rich Pump	11150	380	0.75	1426.599	1063.815	0.79%
		Press Drop				
Equipment	AFCM	(in H2O)	Efficiency	Power (hp)	Power (kW)	%
Blower Loss	293275	17	0.7	1120.58	835.614	0.62%
		Stripper			Equivalent	
Heat Requirements	Heat (kW)	Temp (C)			Work	%
Stripper 1	35100	150			8299.35	6.15%
Stripper 2	57857	150			13680.24	10.13%
Compression	Flow Rate	Pressure	Avg. Press.	Equivalent Work	Equivalent	
Requirements	(mol/min)	(bar)	(bar)	(kJ/mol)	Work (kW)	%
Stripper 1	19093	11	9.3	8.33	6051.19	4.48%
Stripper 2	24493	8	9.5		0031.19	4.4070
	CO2 Flow			Equivalent Work	Equivalent	
Totals	(mol/s)			(kJ/mol)	Work (kW)	%
Stripper	726.429			30.26		
Compression	726.429			8.33		
Auxiliary	726.429			3.43		
Absorber	799.071			6.65		
Total				48.67	35358.094	26.19%

- Scrubber sized for NETL Case 9 power plant (1 atm, 2007 SCFM/MW)
- ULFT nozzles separated at 3mm on a tube; tube-to-tube separation of 3.5cm operated at 6 psi
- Amine Wash and FGD polishing scrubbers are included in Auxiliary equipment
 - AW and FGD each have 1m of reactor depth
 - 4mm nozzle-nozzle separation
 - ULFT nozzles with same 0.76 m jet length

Levelized Cost of Electricity

CARE System - Preliminary

- All numbers are from EERC
 TEA Report for 550 MW plant
 - NSG supplied absorber cost
 - Did not include updated CARE energy audit
 - (used 30% from EERC)
 - 40% increase in LCOE
 - CO₂ Removal Cost = \$28.50/ton
- Needs Absorber Module Cost Updated Before New TEA Can Be Generated.

Category	LCOE		
CapEx Total Plant Cost	\$ 44.44		
OpEx Fixed Operating Cost	\$ 12.30		
OpEx Fuel Cost	\$ 21.00		
OpEx Variable Operating Costs	\$ 7.25		
CapEx CO ₂ Capture System	\$ 4.95		
Total	\$ 89.94		

Schedule/Future Work

Status/Plans

- Critical design review (FEED) completed March '13
- Procurement/Fabrication began May '13
- Construction/Installation to begin in Sept '13
- Testing begins Feb '14

Development Plan

- 2014: Demonstrate 0.5MW and gather data to support the
 5MW system
- 2016: Demonstrate at 5MW, which represent base unit where scaling occurs by increasing the number of 5MW cells
- 2020: Demonstrate at commercial scale (>50MW)

Conclusions

- NeuStreamTM-C
 - High mass transfer G/L contactor
 - Up to 10x smaller volume than traditional CO₂ capture systems
 - Significantly reduced CapEx
 - < \$30/ton CO₂ capture and compression costs
- Successfully proven at bench-scale (80kW)
- 0.5MW pilot demonstration in progress
 - NOx, SOx controls
 - Flue gas heat extraction
 - Innovative Stripper design

Dr. Andrew Awtry, Principal Scientist,
Neumann Systems Group
andya@neumannsystemsgroup.com
(719)247-8519