Offshore Monitoring Lessons Learned: Sleipner and Snøhvit Storage Projects

Philip Ringrose, Anne-Kari Furre & Olav R. Hansen, Statoil ASA, Norway

USDoE/NETL Carbon Storage R&D Project Review Meeting August 20-22, 2013 Pittsburgh

The big questions for CO₂ monitoring

- What type of monitoring is really necessary?
- Several stakeholder viewpoints:
 - 1. What monitoring is important from an operational point of view?
 - 2. What monitoring is required from a regulatory perspective?
 - 3. What monitoring is in the public interest?
- In response to these questions CO₂ storage projects have tried to develop fit-for-purpose approaches to monitoring.
- The biggest technical challenge is that projects need to monitor:
 - The reservoir (saline aquifer)
 - \ldots and the overburden
 - ... and the surface
 - ... and the facilities

CO₂ storage site monitoring portfolio

Monitoring applied at 3 large-scale CO₂ storage projects

Monitoring Technology	Sleipner (Offshore platform)	In Salah (Onshore)	Snøhvit (Offshore subsea)
4D seismic	\checkmark	\checkmark	\checkmark
4D Gravity	\checkmark		\checkmark
CSEM	\checkmark		
Microseismic		\checkmark	
Down-hole gauges			\checkmark
Tracers		\checkmark	
Satellite (InSAR)		\checkmark	
Surface/shallow gas	\checkmark	\checkmark	
Groundwater		\checkmark	

> What was the value of these chosen technologies?

How could we improve the monitoring portfolio?

Sleipner Example (Offshore)

Proven value of geophysical monitoring for site management

Snøhvit Example (Offshore)

- Proven value of geophysical monitoring for site management
- Proven value of down-hole pressure gauges
- Successful well intervention guided by monitoring data

In Salah Example (onshore)

- Proven value of geomechanical monitoring using:
 - InSAR (Interferometric Synthetic Aperture Radar)
 - Microseismic monitoring
 - 3D/4D seismic
- Addresses a key question for CO₂
 Storage pressure management

Map of surface uplift

Monitoring Highlight – Microseismic

Brief introduction to the Sleipner fields

Sleipner Øst: CO₂ is stripped off the gas and injected in the Utsira Fm at ~ 900 m depth, above the condensate reservoir

Statoil

Statoil

Seismic time-lapse monitoring

Development of layer 9

Seismic time-lapse monitoring shows that CO_2 stays in place in the Utsira Fm at Sleipner and gives a detailed description of where the CO_2 is

Gravimetric monitoring

Gravimetric monitoring

Gravimetric monitoring 2009-2002

Observed in-situ CO_2 density from gravity measurements: 720 +/- 80 kg/m³

Snøhvit facts

The first gas development project in the Barents Sea

Structural Setting

Gas Field in Stø, Storage site in Tubåen 2400-2500 m below sea level

Geological X-section through CO2 injector

Tubåen Reservoir Zone

Map view **The Tubåen 4D anomaly** 2003 -> 2009 -> 2011

2003-2009 Anomaly

2009-2011 Anomaly

Horizontal / Areal view Upper 4D anomaly 2003 -> 2009 -> 2011

2003-2009 Final Full offset

2009-2011 Final full offset

Monitoring Techniques applied at Snøhvit - a summary

- Seismic
 - 3D/4D repeats (so far 3 repeats)
 - 2D repeats (so far 1 repeat)
- Multiple Temperature / pressure Gauges
 - Continuous measurement
 - Weekly shut-in measurements
 - Long fall-off when feasible
- Well Logging
 - In-flow logging
 - Pressure & temperature

- 86 bases positioned (1 repeat)

Gravimetry

MAN

Main Lessons Learned

- 1. Never underestimate the challenge!
- 2. Monitoring all pressures and geomechanics is as important as saturation
- 3. The overburden is as important as the reservoir
- 4. The importance of a **good baseline datasets**
- 5. Time-lapse seismic imaging of CO_2 plume development has proven its value
- 6. Monitoring of gas geochemistry is important to assure site integrity
- 7. The combination of different monitoring methods brings added value

Oilfield Monitoring Experience

Technology breakthroughs in permanent systems

CO₂ Monitoring challenge

- Cost-effective combinations
- Geomechanics

Ideal CO₂ Storage Monitoring Portfolio

So what should future CO₂ monitoring look like?

- Reservoir Volume and Pressure Control
- Future Technologies
 - Dominated by non-invasive geophysical methods
 - Extensive use of permanent distributed fibre-optic P, T, acoustic gauges (e.g. DACS)
 - Satellite InSAR and/or seabottom sonar
- Significantly lower cost than today

There's never been a better time for **GOOD ideas**

Presented by: P. Ringrose, A-K Furre, O. Hansen Statoil RDI

www.statoil.com

