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Program Goal and Project Benefits 

• Program Goal: 
– Support industry’s ability to predict CO2 storage 

capacity in geologic formations to within ±30 percent. 

• Project Benefits Statement 
 - This research seeks to develop a set of robust 

mathematical models to predict how coal and shale 
permeability and injectivity change in the presence of 
CO2. When complete, this work will more accurately 
predict permeability/ injectivity in these reservoir types,  
contributing to the Program goal of more accurately 
predicting CO2 storage capacity in geologic formations. 
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Project Overview:   
Goal and Task Objectives 

Goal:  
Develop robust mathematical models to accurately predict how 
coal and shale permeability and injectivity change with CO2 
injection, incorporating the following the Task Objectives: 
 

Objectives: 
• Task 2 – Observe and measure changes in coal and shale 

mechanical properties with exposure to high pressure CO2. 

• Task 3 -  Investigate cleat and matrix swelling and shrinkage during 
gas production and CO2 injection.  

• Task 4 -  Model CO2 injection under in-situ conditions and develop 
improved algorithms and adsorption models. 

• Task 5 – Advanced simulation of coal permeability changes during 
CO2 injection and storage.  



Technical Status - Task 2  
Change in Coal and Shale Properties 
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• COAL - Young’s Modulus decreases & Poisson’s Ratio increases when 
methane is displaced with CO2 indicating that the sample does get softer,  
although changes are not significant.  

• SHALE – Relative to methane, CO2 weakens shale because the change 
in Poisson’s Ratio with pore pressure is larger for CO2 than  for methane. 

 

Poisson’s  Ratio 
Coal 

Poisson’s  Ratio  
Shale 



Technical Status – Task 3  
Investigate Cleat & Matrix Swelling/ Shrinkage 
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• Coal compressibility is not constant 
• Compressibility changes as the pore 

pressure of the sorbing gas changes in 
the reservoir.  

• Calculated values of Cp (shown) express 
compressibility changes for the total 
volume of coal (Cm already included). 



Technical Status - Task 4 
 Modeling CO2 Injection under In-Situ Conditions 

Comparison of Predictions from the Two- 
and Three-Phase Models  

for CO2/Water Mixture Adsorption 

Multiphase Predictions for CO2/Water 
Mixture Adsorption 

Example:  Wet Wyodak Coal at 328.2 oK 

• Adsorption – Gas/Water Mixtures 
• Investigated competitive adsorption behavior of gas/water mixtures on wet coals 
• Developed a new Gibbs-energy-driven multiphase (three-phase) algorithm for 

gas/water mixtures. 



Technical Status – Task 4 
Modeling CO2 Injection under In-Situ Conditions 

 
 
 
 
 
 
 

Comparison of  Adsorption on New 
Albany Shale and Argonne Coals at 

328.2 oK  

Methane 
Nitrogen 

CO2 

• Adsorption  
• New data for pure-gas adsorption on shale 
• Extended coal adsorption models to the case of 

shale-gas adsorption.   



Technical Status – Task 4 
Modeling CO2 Injection under In-Situ Conditions  

• Equation-of-State (EOS) 
– A new equation-of-state volume-translation method provides accurate predictions 

of the saturated and single-phase densities of diverse classes of molecules 
– Special emphasis on fluids found in reservoir systems. 
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Technical Status – Task 4 
Modeling CO2 Injection under In-Situ Conditions 

Example: Carbon Dioxide at 298 oK 

• Equation-of-State (EOS) Predictions using the new Peng-Robinson 
EOS  Volume Translation Method 
• Predictions for single phase liquid densities  & comparison with other models 

• Predictions of  phase equilibrium calculations and volumetric properties 

Carbon Dioxide 

298 oK 



Technical Status - Task 5 
 Advanced Modeling of Permeability Changes 

• Permeability changes depend 
on initial cleat porosity and 
abandonment pressure. 
 

• During CO2 injection, the stress 
path moves away from the coal 
failure envelope due to: 
– replacement of CH4 by CO2, (2)  
– further injection of CO2 to raise 

reservoir pressure.  

 • Shear failure of coal in a depleted CBM reservoir should not 
happen during CO2 injection.  
– failure of coal might happen before CO2 injection if the reservoir is 

depleted to very low pressure (< 200 psi). 
 

  



Technical Status - Task 5 
Advanced Modeling of Permeability Changes 

• Two opposing permeability effects 
can occur near coal shear failure:  
– Permeability can increase due to 

dilatancy (brittle failure). 
– Permeability can decrease due to 

changes in coal mechanical 
properties, or due to creation of 
coal “fines”. 

– Which permeability change occurs  
will depend partly on coal rank. 

 

• From analysis of field data, it 
appears that permeability flattens 
or decreases after failure occurs 
at low reservoir pressure. 
 

• Permeability decrease is 
expected due to fines creation, 
movement, and plugging, 
especially in a soft rock such 
as coal. 
 
 



Technical Status – Task 5 
 Advanced Modeling of Permeability Changes 

• Coal failure can be 
predicted through 
field data 
 

• A new Palmer-Higgs 
(P-H) model has 
been developed and 
is able to predict 
when failure will 
occur. 
 

 



Technical Status – Task 6 
 Technology Transfer 

• Flow and storage modeling for shale 
sequestration 

• Testing of code against large-scale projects. 

• Basin-oriented review of coal and shale storage 
potential. 

• Coal-Seq Website (www.coal-seq.com) 

• Coal-Seq Forums 

 
 
 
 
 
 

• Coal-Seq Forum VIII, 
was held  in 
Pittsburgh, PA   
October 23- 24, 2012 

http://www.coal-seq.com/


Accomplishments to Date 
• Tasks 2 to 5 completed. 

 
• Final reports sent to DOE. 

 
• Detailed history match of a 

Marcellus Shale well. 
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New Albany Shale 
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Key Findings/Lessons Learned 

• Observed changes in Poisson’s ratio and Young’s modulus due to 
injection of CO2 are too small to support the theory of “coal 
weakening associated with methane depletion or CO2 injection”. 

• CO2 injection should be quantity-controlled rather than pressure-
controlled to prevent rapid swelling, tensional strain and coal failure 
in the vicinity of the injection.  

• Coal compressibility, expressed by parameters, Cp and Cm, is not 
constant, but will vary as the pore pressure of the sorbing gas 
changes in the reservoir.   
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Tasks 2 and 3 – Change in Coal and Shale Properties with CO2 
Injection; Cleat and Matrix Swelling/ Shrinkage 



Key Findings/Lessons Learned 

• Formulated a new approach for modeling the competitive adsorption of 
gas/water mixtures. 

• Developed a rigorous model for describing the adsorption-induced swelling of 
coals.  

• Developed a new volume-translation function for saturated and single-phase 
liquid densities at high-pressures.  

• Generalized the Peng-Robinson equation of state for describing the vapor-liquid 
equilibrium of gas/water mixtures at high-pressures. 

• Provided new data and insight to gas adsorption behavior on wet coals by 
measurement of CO2 isotherms on wet coals.   

• Provided new data for pure-gas adsorption on shale and have extended coal 
adsorption models to the case of shale-gas adsorption.   
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Task 4 – Modeling CO2 Injection Under In-Situ Conditions 



Key Findings/Lessons Learned 

• Permeability Changes With Methane Depletion  
– Successful history match of exponential permeability increase up to failure in a San 

Juan Basin CBM well.  
– General behavior is a flattening of the exponential permeability increase with 

depletion, interpreted as a loss of permeability due to fines creation.  
– If cleat porosity is greater than 0.5%, there appears to be no appreciable permeability 

increase with depletion.  
– To model the observed permeability increase with depletion, cleat porosity 

must be  less than 0.2%. 

• Permeability Changes After Coal Failure 
– Permeability after failure appears to vary from well-to-well.  
– Modeling permeability changes after failure is important to better forecast long term 

gas rates and ultimate recovery in San Juan CBM wells. 
– Shear failure of coal in a depleted CBM reservoir should not happen during 

CO2 injection.  
– However, it might happen before CO2 injection if the reservoir is depleted to very low 

pressure (< 200 psi). 19 

 Task 5 – Advanced Modeling of Coal Permeability Changes 



Key Findings/Lessons Learned 

• Permeability Changes With CO2 Injection  
– Tensile failure should occur if during CO2 injection, reservoir pressure exceeds 

overburden pressure, creating horizontal cracks along bedding planes.  

– This would also increase CO2 injectivity, unless the tensile failure created coal fines 
that plugged the fractures.   

– At low depletion pressure, CO2 is injected while raising reservoir pressure. CO2 
replaces methane and matrix swelling exceeds the effect of pressure-induced cleat 
inflation, significantly reducing coal porosity and permeability. Coal anisotropies 
suppress cleat inflation.  

– CO2 injectivity is predicted to be difficult in the San Juan basin  due to cleat 
anisotropy (g ≈ 0.2), plus very low initial cleat porosity.  

– Ideal strategy for successful CO2 injection: Inject CO2 at the lowest depletion 
pressure possible, and at a rate slow enough that reservoir pressure barely 
rises. 

20 

 Task 5 – Advanced Modeling of Coal Permeability Changes 



Next Steps and Future Plans 
• Next Steps 

– Testing of Code Against Large Scale Projects 
• Insert simulation modules into a stand-alone simulation code 
• Validate code against field data set (Allison Unit CO2/ECBM pilot or Pump Canyon 

CO2/ECBM pilot) 
– Basin Oriented Review of Coal and Shale Storage Potential 

• Assess the CO2 storage potential of San Juan Basin’s Fruitland Coal & the Marcellus Shale  

• Future Plans 
– Coal/Shale Property Database 

• Database of porosity and CO2 and methane isotherms for US coal and shale gas basins 
• Data from public and private sources 
• Database will serve as basis for the Screening Model  

– Screening Model 
• Develop a screening model capable of estimating CO2 storage for gas shale and coal seam 

reservoirs 
• Will include findings from CoalSeq III (shrinkage/swelling and failure) 
• Will be built in Visual Basic 
• Input parameters will be available to choose from the Coal/shale Property Database  
• Previous simulations will provide CO2 storage volumes and injection rates 

21 
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Appendix: 
Organization Chart 
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Appendix: Gantt Chart 



24 

Appendix: Gantt Chart, cont. 
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