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Introduction

 Most storage modeling studies assume a
discrete reservoir/caprock interface with
simple (uniform) flow conditions.

* \We address the question of whether or not
heterogeneilties at the interface influence
transmission of CO, into the caprock
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Benefit to the Program

* Program goals being addressed.

— Develop technologies that will support industries’
ability to predict CO, storage capacity in geologic
formations to within =30 percent.

— Develop technologies to demonstrate that 99 percent
of injected CO, remains in the injection zones.

* Project benefits.

— Our results have the potential to significantly improve
prediction of containment system effectiveness.



Project Overview:
Goals and Objectives

 To determine the influence of diagenetic and
structural features of the reservoir/caprock
Interface on transmission of CO, into and
through the caprock.



Technical Status

Initial fieldwork to identify significant interface features
and select study sites

Collection of geological and petrophysical data from
outcrop (Navajo/Carmel, Slickrock/Earthy) and core (Mt.
Simon/Eau Claire)

Use geological and petrophysical data to construct
conceptual geologic and permeability models

Modeling efforts

— Single phase

— Multiphase

Structural framework to predict likelihood of encountering

at sequestration sites
8



Common Interface Features
ldentified During
Reconnaissance

Preferential A e e
cementation =R -

Detormation-band St e
fault interfaces ' s
— Principal focus so far

— Very common in
porous sandstone
reservoirs




Deformation Bands

The most common strain
localization feature found In
porous sandstones (e.g.,
Navajo, Entrada, Mt. Simon)

Form by: grain reorganization
and/or fracture

Typically 2 — 5 orders of
magnitude lower K than host
sand
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Can form capillary seals to
supercritical CO,



ISS-1 Panormaic Photomicrographs of Deformation Band Faults from the Slickrock Member of the Entrada Sandstone
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Host thin section with
the photomicrographed
zone labeled in black
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What happens when deformation band
faults hit the interface?
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Transition to Fractures

I <1 to 30 mm thick mineralized fracture

 How do we know they ittt
are “real” fractures? O
e Used diagenetic |
alterations
— Bleaching

— Mineralization
 Carbonate cementation

» Fe-oxide pseudomorphs of

pyrite
« Hydrocarbon inclusions

e Can infer aperture history
through petrography



Deformation Band/Fracture Transition,
Slickrock/Earthy

1to 5 cm thick zone of
deformation bands

 2to 30 mm thick zone of g
i deformation bands

mineralized fracture

<1 to 1 mm thick calcite

‘ 1 to 8 mm thick calcite
‘ mineralized fracture

Small normal fault with
1 to 2 mm thick calcite
mineralized fracture

Bleached zone

Interface
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Slickrock/Ear
thy
Permeability
Model
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Single-Phase Modeling

« FEMOC (finite element method of
characteristics) code
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Simplified Boundary Conditions and
Permeabillities

Constant Head = 5.069 m

No Flow
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Hydraulic Head

Interface ———

ISS 1, Fracture at Interface Offset, 0.04 years, 06/09/13
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Importance of small-scale
architecture

ISS 1, Fracture at Interface Offset, 0.04 years, 06/09/13 ¢ Deform ation
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Importance of small-scale

architecture
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Deformation
band at
Interface

Importance of small-scale

architecture

ISS 1, Def Band at Interface Offset, 0.04 years, 06/09/13
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Relating Fractures to Structural
Position on the SR Swell

= : SE3iaTe N B
e3338es" _ ttp:/www.castlecountry.

"
&




Top Navajo Structural Contour Map
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Accomplishments to Date

— Navajo/Carmel, Earthy/Slickrock

» Geologic description and conceptual permeability models of
Interfaces for 6 Utah sites

» 10s of km fracture density and orientation data
» Single-phase modeling results
* Progress on multiphase modeling

— Mt. Simon/Eau Claire

» Core description, petrographic analysis and mercury porosimetry
competed for 180 ft of Mt. Simon/Eau Claire (Dallas Center
Structure, central lowa)
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Summary

— Key Findings

Deformation-band faults often link to transmissive fracture networks in
the caprock

Deformation bands can form capillary seals to CO,
Can compartmentalize the reservoir adjacent to the interface

Small-scale interface features can have a huge impact on fluid
transmission

Distribution of such features a function of structural position at analog
storage sites

If deformation bands are in your reservoir, they should be considered
when risking the caprock

Deformation bands and fractures are present in the Mt. Simon, but have
not observed fractures in the Eau Claire.
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Summary

— Lessons Learned
« Bring your modelers to the field site
— Future Plans
* Multiphase flow modeling using FEHM
« Additional larger-scale modeling
» Calculating reservoir-scale fluxes
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Gantt Chart

Task 7: Task Integration

Task 6: THMC Modeling

Task 5: Mechanics
Modeling

Task 4: Structural Analysis

Task 3: Sedimentary
Analysis

Task 2: Fieldwork

Task 1: Proj. Mngmt.
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