In-Situ MVA of CO₂ Sequestration Using Smart Field Technology FE - 0001163

Shahab D. Mohaghegh

Petroleum Engineering & Analytics Research Lab (PEARL)

West Virginia University

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Presentation Outline

- Introduction
- Reservoir Simulation Model
- Intelligent Leakage Detection System (ILDS)
- Accomplishments
- Summary

Objective

- Develop an in-situ CO₂ leak detection technology based on the concept of Smart Fields.
 - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO₂ leakage.

Industrial Advisory Committee (IAC)

• Project goes through continuous peer-review by an Industrial Review Committee.

Name	Affiliation
Neeraj Gupta	Battelle
Dwight Peters	Schlumberger
George Koperna	ARI
Grant Bromhal	DOE-NETL
Richard Winschel	CONSOL

- Meetings:
 - November 6th 2009 :
 - Conference call
 - Site selection criteria
 - November 17th 2009:
 - A meeting during the Regional Carbon Sequestration Partnership Meeting in Pittsburgh
 - Selection of a suitable CO₂ sequestration site
 - November 18th 2011:
 - Reporting the modeling process to IAC
 - February 16th 2012:
 - Reporting the modeling process to NETL/DOE
 - April 18th 2013:
 - Reporting project's progress to NETL/DOE

Background

Injected Fluid: *Carbone Dioxide* Depth of Injection Well: *11,800ft* Depths & Geological Name of Interval: *9,400-10500 ft (Paluxy Formation)* Injection Volumes: 500 ton / day(9.48 Bcf/day) Injection Duration: 3Years(2012-2015)

Geological Model

Reservoir Simulation Model

17 Layers(10 Injection Layers)
51 Simulation Layers
Porosity Distribution from 40 Well Logs
Permeability Distribution: Conductive
1,147,500 Grid Blocks

Plume extension: 500 years after injection ends.

Gas Saturation 2512-01-01 K layer: 1

Impact of Trapping Mechanism

Trapping Mechanism Contribution to the Storage Process (After 500 years)

Total CO_2 Injected (MMCF) Total CO_2 Injected (TONS)

15,045 550,596 10

Two additional geological layers where included in the model corresponding to the Washita-Fredericksburg interval (on top of the Paluxy formation):

- Basal Shale (Seal)
- Danztler Sand (Aquifer)

Realization	Thickness (ft)	Permeability (Darcy)
1	150	10^-3
2	150	10^-5
3	150	10^-7
4	200	10^-3
5	200	10^-5
6	200	10^-7
7	250	10^-3
8	250	10^-5
9	250	10^-7

150 ft < h < 250 ft 10⁻³ darcy < k < 10⁻⁷ darcy

Grid refinement of the basal shale simulation layers:

Grid was refined vertically into 75 to 125 simulation layers to generate gridblocks with thickness of 2 ft.

Depth of invasion of CO₂ within the Basal Shale (all realizations)

Realization	Thickness (ft)	Permeability (Darcy)			
1	150	10^-3			
2	150	10^-5			
3	150	10^-7			
4	200	10^-3			
5	200	10^-5			
6	200	10^-7			
7	250	10^-3			
8	250	10^-5			
9	250	10^-7			

150 ft < h < 250 ft 10⁻³ darcy < k < 10⁻⁷ darcy

3.15 miles

283

1,259,000 1,261,000 1,263,000 1,265,000 1,267,000 1,269,000 1,271,000 1,273,000

9.95

Pressure Gain = Avg. P @ 500 years - Initial Avg. P

Pressure gain – all scenarios

Seal Conductivity	Permeability of the	K*h range of the confining unit			
Scenario	Confining Unit (md)	(md-	·ft)		
Conductive	1	150	250		
Tight	0.01	1.5	2.5		
Very Tight	0.0001	0.015	0.025		

Pressure Gain vs Scenario

Impact of Boundary Conditions

Pressure Behavior in Observation Well(D-9-8)

Post Injection Site Care (PISC)

Sensitivity Analysis

CO₂ Plume Extension Reservoir Pressure @ Observation Well Gas Saturation 2512-01-01 K laver: 1 4,800 1 267 000 1,268,000 1,269,000 1,270,000 1,271,000 1,272,000 1,273,000 1 274 000 Pressure: 98,83,1 4,700 Minor Axis (2667 ft) 1.00 Pressure: 98,83,1 (psi) 0.90 4,600 0.80 0.70 0.60 4.500 Major Axis (4933 ft) 0.50 0.41 4,400 0.31 0.21 1740 0.00 870.00 0.11 0.50 0.2 0.7 0 km 4,300 0.01 2100 2200 2300 2400 2500 1,269,000 1,270,000 1,271,000 1,272,000 1,273,000 1.267.000 1,268,000 1.274.000 Time (Date) <u>F</u>_______ **Relative permeability** Permeability Kv/Kh ۲ 0.9 Maximum Residual Very Conductive **Different Rock Types** 0.8 Gas Saturation £ 0.7 Conductive 0.038643818 R²=0.841 Ē 0.6 Brine Density ٠ ----- Krg-Base Case Average 2 = 0.9057 ≥ 0.5 - Krg High 2 Brine Compressibility ۲ -Krg High1 (20 0.4 = 0.2533e22.888 -Krg Low 1 R² = 0.8652 Tight **Boundary Condition** -Krg Low 2)seg 0.3 0.9004+849 = 0.3473 Very Tight 0.2 0.3 0.1 0.15 0.2 0.25 0.35 0.1 Porosity 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Gas(CO₂) Saturation

10000

1000

100

0.05

History Matching

History Matching

17 Layers(10 Injection Layers) 51 Simulation Layers Porosity Distribution from 40 Well Logs Permeability: 460md 125*125*51 (800000) Grid Blocks ($\Delta x = \Delta y = 133.3$ ft) Relative Perm: Mississippi Test site (sg=7.5%)

Operational Constraints (actual rate +Max 6300 psi) $P_{brine} = 62 \text{ lb/ft3}$ $C_{brine} = 3x10^{-6} (1/\text{psi}) \text{ at } 14.7 \text{ psi}$ $P_{reference} = 4393 \text{ psi} \text{ at } 4015 \text{ ft.}$ Kv = 0.1 Kh

History Matching

CO₂ Leakage Modeling

CO₂ Leakage Modeling

CO₂ Leakage Modeling

Al Model Development

Al Model Development

Output

Validation – Blind Runs

Validation – Blind Runs

ILDS Leakage Rate Prediction

PDGs at Citronelle Site

Ref: ARI

25-Nov

Noise Analysis - PDGs

$$Ni = P_{actual} - P_{fitted} \rightarrow Noise \ Level = \left(\frac{1}{n-1}\sum_{i=1}^{n}N_{i}^{2}\right)^{1/2}$$

Distribution = Normal (Gaussian)

De-noising Process

Training with De-Noised Data

Leakage Location(Y)

Leakage Rate

The Interface Development

CO2 Leakage detection System

Accomplishments to Date

- Geological model was developed.
- Reservoir Simulation Model was developed.
- Impact of Relative Perms of Trapping Mechanism was determined
- Seal Quality and Integrity was studied
- Sensitivity analysis was performed
- Reservoir Simulation Model was history matched
- Intelligent Leakage Detection System (ILDS) was designed and developed.
 - Initial Design
 - Validated for Simple Reservoir System
 - Validated for Simple Leakage System
- High Frequency data was cleansed and summarized
- ILDS interface was developed

Summary

• Key Findings:

Location and amount of CO₂ leakage can be detected and quantified, rather quickly, using continuous monitoring of the reservoir pressure.

- Pattern recognition capabilities of Artificial Intelligence and Data Mining may be used as a powerful deconvolution tool.

Lessons Learned(proof of concept):

- Development of an Intelligent Leakage Detection System (ILDS) is initiated for detection and quantification of CO₂ leakage.

- Future Plans:

- Increase the robustness of ILDS by:

- + Using history matched model
- + Examining impact of different boundary conditions,
- + Including more sources of leakage(like Cap rock Leakage)
- + Examining detection of simultaneous multiple leakages.

Bibliography

List peer reviewed publications generated from project per the format of the examples below

- Journal, one author:
 - Gaus, I., 2010, Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks: International Journal of Greenhouse Gas Control, v. 4, p. 73-89, available at: XXXXXX.com.
- Journal, multiple authors:
 - MacQuarrie, K., and Mayer, K.U., 2005, Reactive transport modeling in fractured rock: A state-of-the-science review. Earth Science Reviews, v. 72, p. 189-227, available at: XXXXXX.com.
- <u>Publication</u>:
 - Bethke, C.M., 1996, Geochemical reaction modeling, concepts and applications: New York, Oxford University Press, 397 p.

Appendix Benefit to the Program

- Program goals :
 - Develop technologies to demonstrate that 99 percent of injected CO_2 remains in the injection zones.
- Benefits statement:
 - This project is developing the next generation of intelligent software that takes maximum advantage of the data collected using "Smart Fields" technology to continuously and autonomously monitor and verify CO₂ sequestration in geologic formations. This technology will accommodate in-situ detection and quantification of CO₂ leakage in the reservoir.

Appendix Project Overview: Goals and Objectives

- Goals and objectives in the Statement of Project:
 - This project proposes developing an in-situ CO₂ Monitoring and Verification technology based on the concept of "Smart Fields". This technology will identify the approximate location and amount of the CO₂ leakage in the reservoir in a timely manner so action can be taken and ensure that 99 percent of the injected CO₂ remains in the injection zone.
 - Success Criteria and Decision Points:
 - There are a total of 10 milestones (and 4 sub-Milestone) in this project.
 - Decision points come at the end of quarters 4 (Milestone 2.2) and 15 (Milestone 6). At the decision points a "go" or "no go" decision on the continuation of the project is made based on the accomplishments of the project up to that point.

Appendix Organization Chart

Main Contributors (Research & Development): Alireza Haghighat, Alireza Shahkarami, Daniel Moreno, Najmeh Borzoui, and Yasaman Khazaeni.

Full Time Research Associate: Vida Gholami,

Appendix Gantt Chart

August 22, 2013

	Project			Budjet	Period 1				Budget Period 2				ן					
Task Title	Tasks	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	1
Program Management	Task One																	4
Site Selection	Task Two		I I															
	2.1								Task	7: Pe	rformi	ng Pat	tern R	ecogn	ition A	nalysi	s	
	2.2									Su	htask 7	7 <u>4</u> . Nc	ural N	atworl	k Train	ina an	Ч	
	2.3		-							00					A Ham	ing an	u	
Base Model Development	Task Three		-	1						Ca	libratic	on				-		
	3.1									Su	btask 7	7.5: Ne	eural N	etworl	k Valid	ation		
	3.2									Su	btask 7	7.6: Ne	eural N	etworl	k Mode	el Anal	vsis	
	3.3								Task	9. Int	earatir	0.0 nd	. Inject	tion an	d Hist	orv Ma	, tching	r
	3.4								46.0	ledel	cgram	ig 00;	2 11 je o					,
	3.5									loaei								
	3.6									Su	btask S	9.2: In	Situ C	O ₂ Bel	havior	Valida	tion	
Sensitivity Analysis	Task Four									Su	btask 9	9.3: Mo	odel In	tearity	Verifi	cation		
	4.1									•••								
	4.2																	
	4.3																	
CO2 Leakage Modeling	Task Five																	1
	5.1																	1
	5.2																	
	5.3]
	5.4																	1
High Frequency Data Handling	Task Six										I,							1
	6.1																	1
	6.2																	1
	6.3							1]									1
Pattern Recognition Analysis	Task Seven																	1
	7.1																	
	7.2]
	7.3]
	7.4]
	7.5																	
	7.6																	
Application to	Task Fight																	
Homogeneous Reservoir	Task Light																	
History Matching	Task Nine																	
	9.1																	
	9.2																	
	9.3																	
Application to Heterogeneous Reservoir	Task Ten																	
Interface Development	Task Eleven																	1
																_	-	-

Milestone Timelines

Milestone log										
	Title	Description	Related task or subtask	Completion Date						
Budget Period 1										
Milestone 1.1	Advisory Board Meeting	Advisory board should get together for a meeting (or conference call) to select a site for the project.	Subtask 2.1	End of First Quarter						
Milestone 1.2	Site Selection	A site must be selected for the project.	Subtask 2.2, 2.3	End of Second Quarter						
Milestone 2.1	Data collection	Completion of geologic and production data collection	Subtask 3.2	End of Third Quarter						
Milestone 2.2	Completion of geological model	Completion of geologic/geo-cellular model	Subtask 3.3	End of Fourth Quarter						
Milestone 2.3	Completion of the base model	Completion and testing the base flow model	Subtask 3.6	End of Fifth Quarter						
Milestone 3	Sensitivity Analysis	Completion of the sensitivity analysis on the reservoir model	Subtask 4.3	End of Sixth Quarter						
		Budget Period 2								
Milestone 4.1	CO2 Leakage Modeling	Model realistic CO2 leakage from the formation	Subtask 5.1	End of Eighth Quarter						
Milestone 4.2	Downhole pressure modeling	Model realistic real-time downhole pressure measurements.	Subtask 5.2, 5.3, 5.4	End of Eleventh Quarter						
Milestone 5	Handling High Frequency Data	Developing techniques for handling high frequency data	Subtask 6.1, 6.2, 6.3	End of Thirteenth Quarter						
Milestone 6	Pattern recognition	Completing pattern recognition analysis	Subtask 7.1, 7.2, 7.3, 7.4, 7.5, 7.6	End of Fifteenth Quarter						
Milestone 7	Application to Homogeneous system	Completing of analysis and application to Homogeneous system	Task 8	End of Fifteenth Quarter						
Milestone 8	CO2 Injection Modeling	Completion of modeling the CO2 injection.	Subtask 9.3	End of Fifteenth Quarter						
Milestone 9	Application to Heterogeneous system	Completing of analysis and application to Heterogeneous system	Task 10	End of Sixteenth Quarter						
Milestone 10	Build Program Interface	Completion of Software Package	Task 11	End of Sixteenth Quarter						