In-Situ MVA of $CO₂$ Sequestration Using Smart Field Technology FE - 0001163

Shahab D. Mohaghegh

Petroleum Engineering & Analytics Research Lab (PEARL)

West Virginia University

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Presentation Outline

- Introduction
- Reservoir Simulation Model
- Intelligent Leakage Detection System (ILDS)
- Accomplishments
- Summary

Objective

- Develop an in-situ $CO₂$ leak detection technology based on the concept of Smart Fields.
	- Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of $CO₂$ leakage.

Industrial Advisory Committee (IAC)

• Project goes through continuous peer-review by an Industrial Review Committee.

- Meetings:
	- November $6th$ 2009 :
		- Conference call
		- Site selection criteria
	- November 17th 2009:
		- A meeting during the Regional Carbon Sequestration Partnership Meeting in Pittsburgh
		- Selection of a suitable $CO₂$ sequestration site
	- November 18th 2011:
		- Reporting the modeling process to IAC
	- February 16th 2012:
		- Reporting the modeling process to NETL/DOE
	- April 18th 2013:
		- Reporting project's progress to NETL/DOE

Background

Injected Fluid: *Carbone Dioxide* Depth of Injection Well:*11,800ft* Depths & Geological Name of Interval: *9,400-10500 ft (Paluxy Formation)*

Injection Volumes: *500 ton/day(9.48 Bcf/day)* Injection Duration: *3 Years(2012-2015)*

Geological Model

Reservoir Simulation Model

17 Layers(10 Injection Layers) 51 Simulation Layers Porosity Distribution from 40 Well Logs Permeability Distribution: Conductive 1,147,500 Grid Blocks

Plume extension: 500 years after injection ends. Gas Saturation 2512-01-01 K layer: 1

7

Impact of Trapping Mechanism

Trapping Mechanism Contribution to the Storage Process (After 500 years)

Total CO2 Injected (MMCF) 15,045 Total CO2 Injected (TONS) 550,596

10

Two additional geological layers where included in the model corresponding to the Washita-Fredericksburg interval (on top of the Paluxy formation):

- • *Basal Shale (Seal)*
- • *Danztler Sand (Aquifer)*

150 ft < h < 250 ft 10-3 darcy < k < 10-7 darcy

Grid refinement of the basal shale simulation layers:

Grid was refined vertically into 75 to 125 simulation layers to generate gridblocks with thickness of 2 ft.

Depth of invasion of CO₂ within the Basal Shale (all realizations)

150 ft < h < 250 ft 10-3 darcy < k < 10-7 darcy

Realizations

1,259,000 1,261,000 1,263,000 1,265,000 1,267,000 1,269,000 1,271,000 1,273,000

9.95

3.15 miles

ł

Pressure Gain = Avg. P @ 500 years – Initial Avg. P

Pressure gain – all scenarios

Pressure Gain vs Scenario

Impact of Boundary Conditions

Pressure Behavior in Pressure: East aquifer
Pressure: South+East aquifer
Pressure: South+East + West aquifer
Pressure: South+East + West aquifer

Post Injection Site Care (PISC)

Sensitivity Analysis

CO2 Plume ExtensionReservoir Pressure @ Observation Well 1,268,000 $1,269,000$ $1,270,000$ $1,271,000$ $1,272,000$ $1,273,000$ Pressure: 98,83,1 1.267000 1.274000 4,700-Minor Axis (2667 ft) 1.00 Pressure: 98,83,1 (psi) 0.90 4.600 0.80 0.70 0.60 4.500 Major Axis (4933 ft) 0.50 10.41 $4,400$ 0.31 0.21 0.00 870.00 1740 10.11 0.50 $\overline{0.7}$ $0²$ $0 km$ 4,300 0.01 2100 2200 2300 2400 2500 1,267,000 1,268,000 1,269,000 1,270,000 1,271,000 1,272,000 1,273,000 1,274,000 **Time (Date)** *Relative permeability Permeability* • *Kv/Kh* 0.9 • *Maximum Residual* **Very Conductive Different Rock Types** 0.8 *Gas Saturation* 줄 0.7 Conductive **BLELSKOON** $148.0 - 58$ E 0.6 • *Brine Density* Krg-Base Case Average 0.9067 $\frac{9}{2}$ 0.5 -Krg High 2 • *Brine Compressibility* -Krg High1 $= 0.2533e^{22.98h}$ $\frac{1}{8}$ 0.4 -Krg Low 1 $R^2 = 0.8652$ **Tight** • *Boundary Condition* -Krg Low 2 $\frac{8}{9}$ 0.3 $0.9004e^{0.448}$ $= 0.3473$ Very Tight 0.2 0.1 0.1 0.15 0.2 0.25 0.35 0.1 Porosity o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Gas(CO2) Saturation

10000

1000

100

 0.05

History Matching

History Matching

17 Layers(10 Injection Layers) 51 Simulation Layers Porosity Distribution from 40 Well Logs Permeability: 460md 125*125*51 (800000) Grid Blocks ($\Delta x = \Delta y = 133.3$ ft) Relative Perm: Mississippi Test site (sg=7.5%)

Operational Constraints (actual rate +Max 6300 psi) $P_{\text{brine}} = 62 \text{ lb/ft3}$
C_{brine} = 3x10⁻⁶ (1 $= 3x10^{-6}$ (1/psi) at 14.7 psi $P_{reference} = 4393 \text{psi at } 4015 \text{ ft.}$ $Kv = 0.1Kh$

History Matching

CO₂ Leakage Modeling

CO₂ Leakage Modeling

CO₂ Leakage Modeling

AI Model Development

AI Model Development

Output

Validation – Blind Runs

Validation – Blind Runs

ILDS Leakage Rate Prediction

PDGs at Citronelle Site

Ref: ARI

Noise Analysis - PDGs

$$
Ni = P_{actual} - P_{fitted} \rightarrow Noise Level = \left(\frac{1}{n-1}\sum_{i=1}^{n} N_i^2\right)^{1/2}
$$

Noise Level = 0.08 Psi Distribution = Normal (Gaussian)

30

De-noising Process

31

Training with De-Noised Data

Leakage Rate

The Interface Development

CO2 Leakage detection System

Accomplishments to Date

- Geological model was developed.
- Reservoir Simulation Model was developed.
- Impact of Relative Perms of Trapping Mechanism was determined
- Seal Quality and Integrity was studied
- Sensitivity analysis was performed
- Reservoir Simulation Model was history matched
- Intelligent Leakage Detection System (ILDS) was designed and developed.
	- Initial Design
	- Validated for Simple Reservoir System
	- Validated for Simple Leakage System
- High Frequency data was cleansed and summarized
- ILDS interface was developed

Summary

• **Key Findings:**

 \blacksquare Location and amount of CO₂ leakage can be detected and quantified, rather quickly, using continuous monitoring of the reservoir pressure.

 - Pattern recognition capabilities of Artificial Intelligence and Data Mining may be used as a powerful deconvolution tool.

– **Lessons Learned(proof of concept):**

 - Development of an Intelligent Leakage Detection System (ILDS) is initiated for detection and quantification of $CO₂$ leakage.

– **Future Plans:**

- Increase the robustness of ILDS by:

- + Using history matched model
- + Examining impact of different boundary conditions,
- + Including more sources of leakage(like Cap rock Leakage)
- + Examining detection of simultaneous multiple leakages.

Bibliography

List peer reviewed publications generated from project per the format of the examples below

- Journal, one author:
	- Gaus, I., 2010, Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks: International Journal of Greenhouse Gas Control, v. 4, p. 73-89, available at: XXXXXXX.com.
- Journal, multiple authors:
	- MacQuarrie, K., and Mayer, K.U., 2005, Reactive transport modeling in fractured rock: A state-of-the-science review. Earth Science Reviews, v. 72, p. 189-227, available at: XXXXXXX.com.
- Publication:
	- Bethke, C.M., 1996, Geochemical reaction modeling, concepts and applications: New York, Oxford University Press, 397 p.

Appendix Benefit to the Program

- Program goals :
	- Develop technologies to demonstrate that 99 percent of injected $CO₂$ remains in the injection zones.
- Benefits statement:
	- This project is developing the next generation of intelligent software that takes maximum advantage of the data collected using "Smart Fields" technology to continuously and autonomously monitor and verify $CO₂$ sequestration in geologic formations. This technology will accommodate in-situ detection and quantification of $CO₂$ leakage in the reservoir.

Appendix Project Overview: Goals and Objectives

- Goals and objectives in the Statement of Project:
	- This project proposes developing an in-situ $CO₂$ Monitoring and Verification technology based on the concept of "Smart Fields". This technology will identify the approximate location and amount of the $CO₂$ leakage in the reservoir in a timely manner so action can be taken and ensure that 99 percent of the injected $CO₂$ remains in the injection zone.
	- Success Criteria and Decision Points:
		- There are a total of 10 milestones (and ⁴ sub-Milestone) in this project.
		- Decision points come at the end of quarters 4 (Milestone 2.2) and 15 (Milestone 6). At the decision points a "go" or "no go" decision on the continuation of the project is made based on the accomplishments of the project up to that point.

Appendix Organization Chart

Main Contributors (Research & Development): Alireza Haghighat, Alireza Shahkarami, Daniel Moreno, Najmeh Borzoui, and Yasaman Khazaeni.

Full Time Research Associate: Vida Gholami,

Appendix Gantt Chart

August 22, 2013

Milestone Timelines

