

Geo-Chemo-Mechanical Studies for Permanent Storage of CO₂ in Geologic Formations DE-FE0002386

Jürg Matter,

Peter Kelemen, Ah-hyung Alissa Park, Greeshma Gadikota Columbia University in the City of New York

Presentation Outline

Benefit and Overview

Results and Accomplishments

- Mineral Characterization
- Effect of Temperature, Pressure and Chemical Additives on Mineral Carbonation
- Changes in Pore Structure and Morphology due to Carbonation
- Reactive Cracking

> Summary

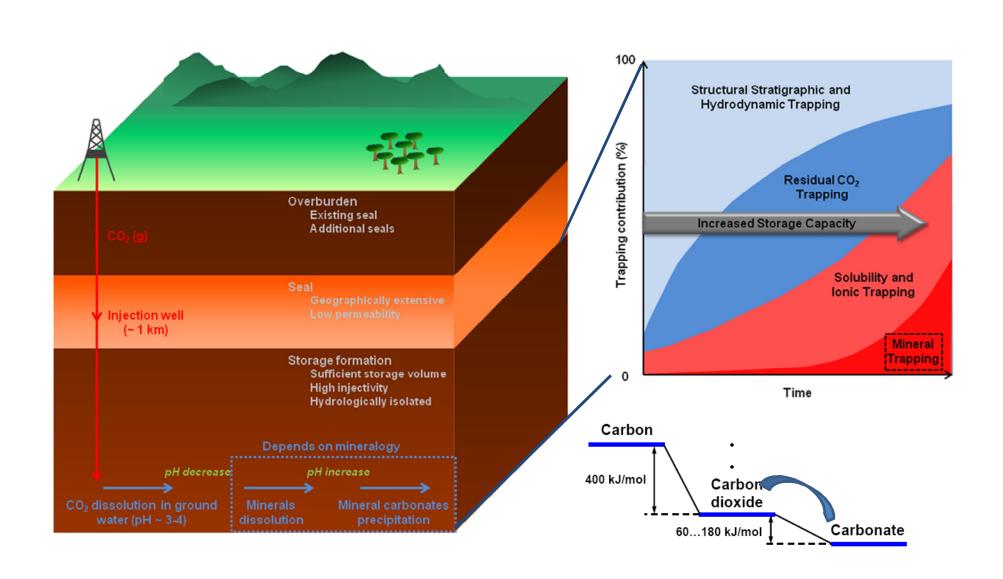
Benefit of the Program

Identify the program goals being addressed

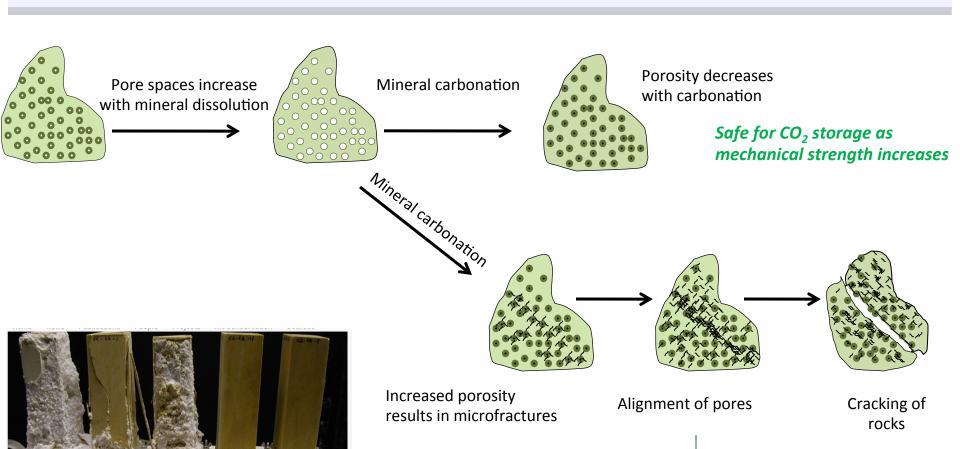
Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones surface area.

Project Benefits

The project is to identify the effect of in-situ carbonation on the stability of geologic formations injected with CO_2 . The technology, when successfully demonstrated, will provide valuable information on the stability of the CO_2 geological storage. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent CO_2 storage permanence in the injection zone(s).


Project Overview: Goals and Objectives

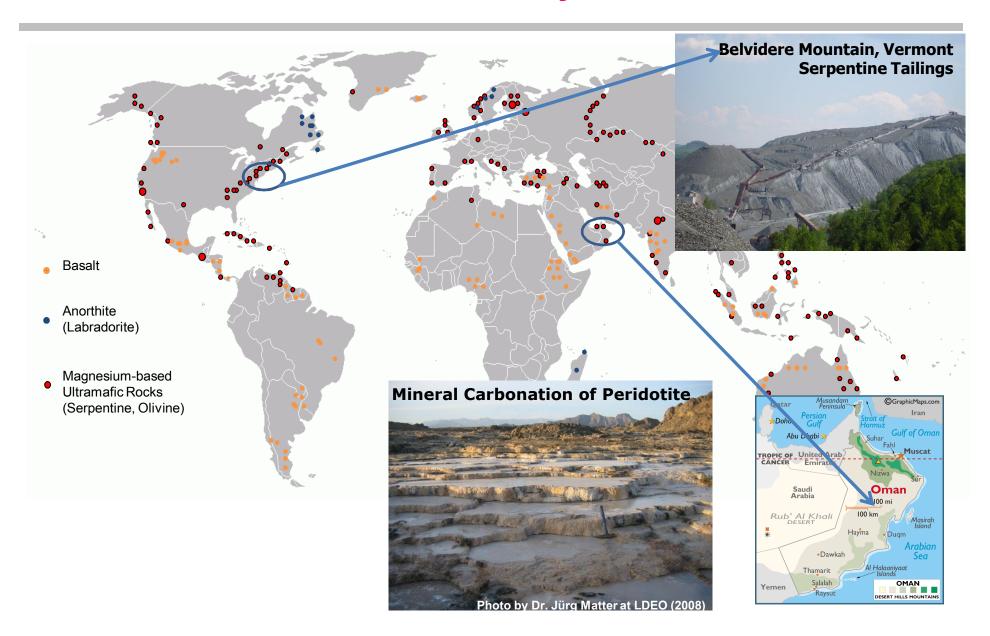
- (i) Determine and compare the effect of temperature, partial pressure of CO₂ and chemical additives on carbonation of various minerals such as olivine, labradorite, anorthosite and basalt
- (ii) Quantify changes in pore structure and particle size before and after carbonation and analyze changes in morphological structure of the mineral due to carbonation
- (v) Determine the effect of pore fluid chemistry on mechanical behavior of rocks such as changes in hydrostatic compaction and strain on thermally cracked dunite saturated with CO₂-saturated brines



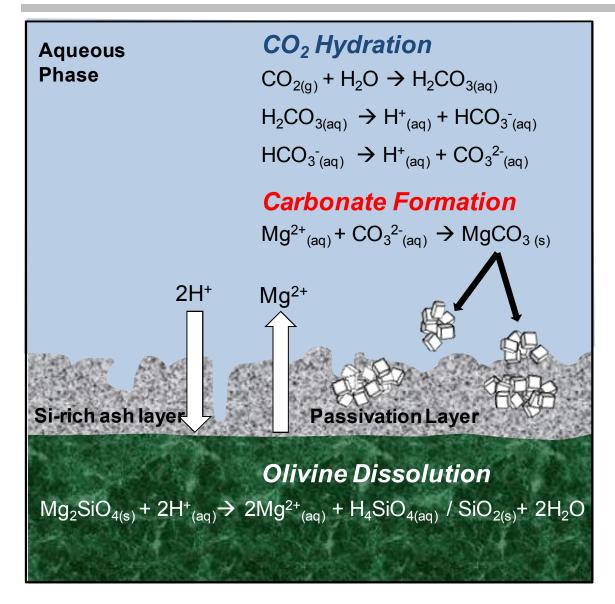
Carbon Storage in Geologic Formations

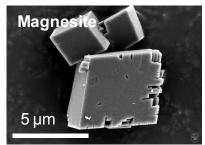
Mineral Carbonation and Reactive Cracking

http://gwsgroup.princeton.edu/SchererGroup/ Salt Crystallization.html

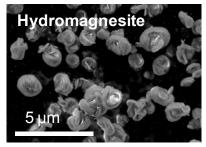

Salt Crystallization

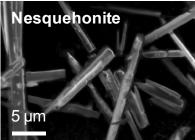
If overburden and caprock seal is good, caprock seal is not good, then cracking is ok is there a problem?


Worldwide Availability of Minerals



Olivine Carbonation Reaction Scheme




Magnesium Carbonate Phases

High temperature

Low temperature

Minerals of Interest

Mineral	MgO	CaO	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V_2O_5	LOI%	Sum %	Ni %
Olivine	47.3	0.16	13.9	39.7	0.2	0.01	<0.01	<0.01	< 0.01	0.15	0.78	< 0.01	-0.7	101.5	0.27
Anorthosite	8.74	14.1	10.6	41.8	24.2	0.59	0.03	0.04	< 0.01	0.13	0.08	< 0.01	0.12	100.4	0.02
Labradorite	0.24	10.2	0.97	54.3	28.0	5.05	0.59	0.14	0.04	0.01	0.10	<0.01	0.32	99.8	N/A
Basalt	4.82	8.15	14.6	51.9	13.4	2.91	1.09	1.74	0.32	0.21	0.10	0.06	0.27	99.6	0.04

Repeat 4 times

Mineral Cleaning Protocol

Determine particle size distribution of sample; if no particles <5 um, proceed directly to vacuum oven drying, otherwise follow the steps listed below

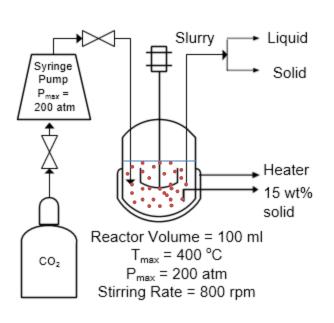
Add 45g of mineral to 10 µm sieve

Place sieve in ultrasonic bath filled with D.I. water

Shake sieve in ultrasonic bath for 5 minutes and fill fresh D.I. water

Filter and weigh the cleaned sample to determine the yield

Place the cleaned mineral samples in a vacuum oven at 70°C for 24 hours


Compositions of Mixture Minerals (wt%)

	Anorthosite	Basalt (Columbia River)						
Anorthite	63.3	20.3						
Albite	2.6	24.6						
Diopside	3.4	7.9						
Enstatite	-	8.3						
Forsterite	14.1	-						
Fayalite	10.4	-						

Experimental Set-up for Mineral Carbonation Studies

	Post-Reaction Analysis
	ICP-AES
i	Total Carbon Analysis
	Total Inorganic Carbon Analysis
	Thermogravimetric Analysis
	X-Ray Diffraction
	SEM-EDS
į	Particle Size Analysis
	BET

Doot Dootion Analysis

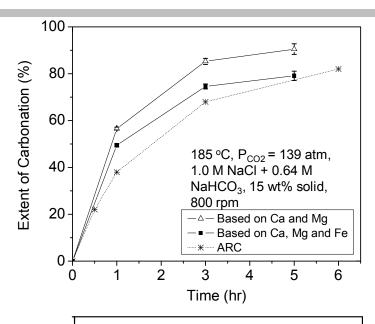
(Wt%)	Olivine (Mg ₂ SiO ₄)
MgO	47.3
CaO	0.2
Fe_2O_3	13.9
Al_2O_3	0.2
SiO ₂	39.7

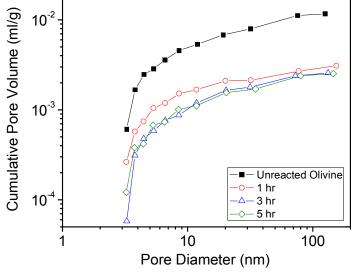
Key Questions

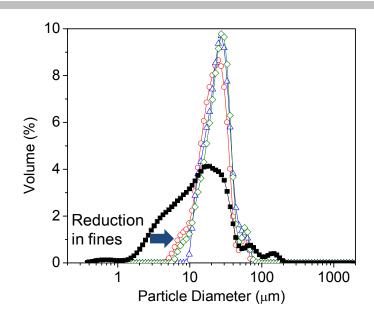
What are the rate limiting steps?

What is the role of reaction time, P_{CO2} and temperature?

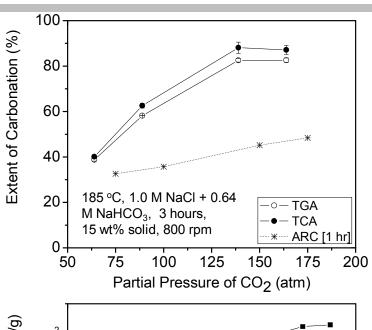
What is the effect of additives such as NaCl and NaHCO₃ and why?

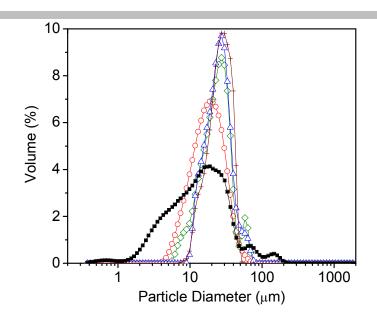

- Speculations that NaHCO₃ is a "catalyst"
- Evidence of NaHCO₃ as a buffer and carbon carrier

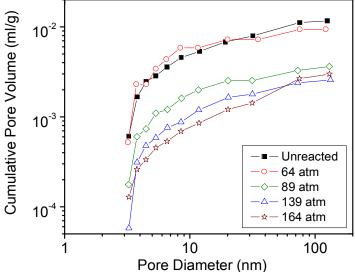

- Useful for simulating in-situ conditions
- Estimate changes in physical structure such as porosity, surface area etc.,
- pH changes over time
- Appropriate for determining long-term (~days)
 CO₂-mineral-water interactions



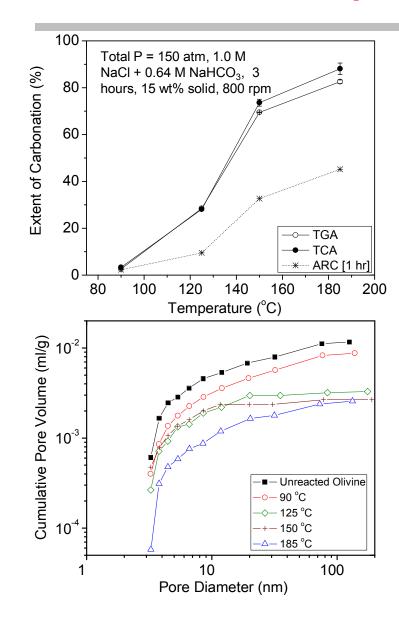
Effect of Reaction Time on Olivine Carbonation

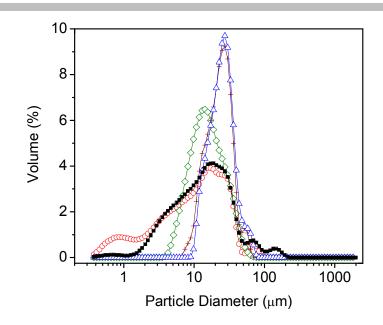



- Reaction rate increases significantly for up to 3 hours
- Significant reduction in the fine particles smaller than 10 µm and sharper distributions due to carbonation
- Order of magnitude reduction in pore volume
- Surface area reduced from 3.77 m²/g to 1.25, 0.96 and 0.15 m²/g after 1, 3 and 5 hr reaction times

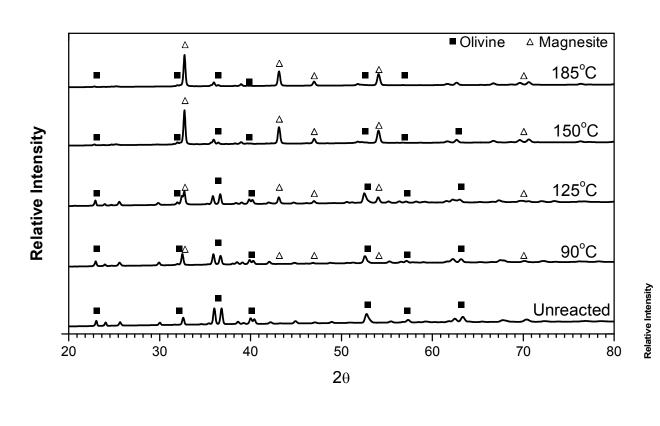


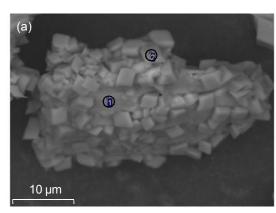
Effect of CO₂ Partial Pressure on Olivine Carbonation

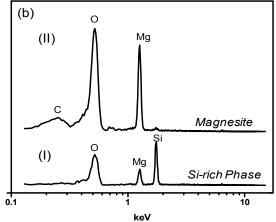



- Increasing CO₂ partial pressure enhances carbonation upto
 139 atm and does not enhance carbonation beyond 139 atm
- As conversion is enhanced, particle size distribution becomes narrower and pore volume decreases progressively.
- Surface area reduced from 3.77 m^2/g to 3.20, 1.73, 0.96 and 0.80 m^2/g for PCO2 = 64, 89, 139 and 164 atm, respectively.

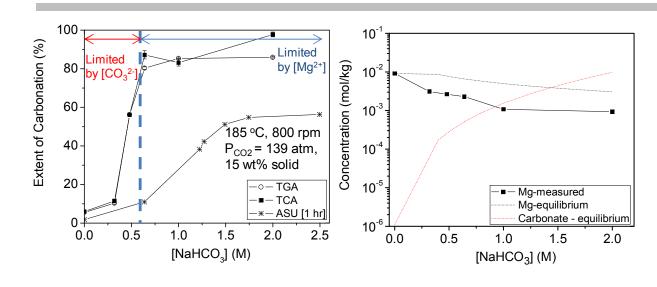
Effect of Temperature on Olivine Carbonation



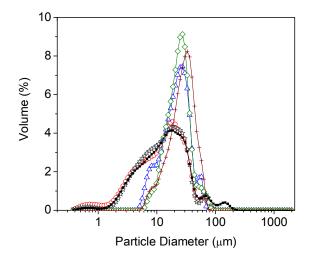

- Increasing temperature enhances mineral dissolution and carbonation kinetics
- As conversion is enhanced, particle size distribution becomes narrower and pore volume decreases progressively.
- Surface area reduced from 3.77 m²/g to 2.01, 1.10, 1.07 and 0.96 m²/g for 90, 125, 150 and 185 °C, respectively.

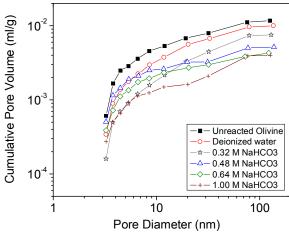


Phase Transformation of Olivine



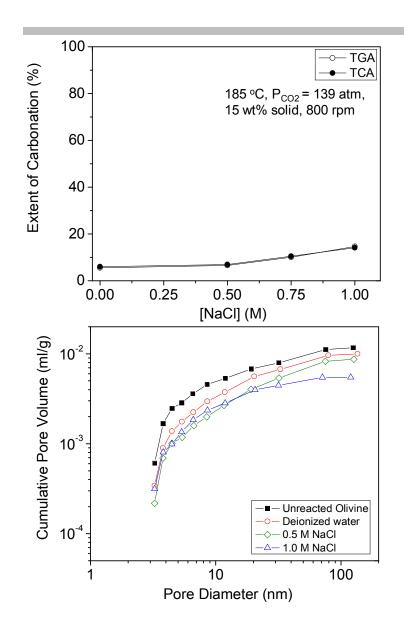
- Dominant formation of magnesite (MgCO₃)
- Hydrous MgCO₃ phases were not formed in the range of 90-185 °C

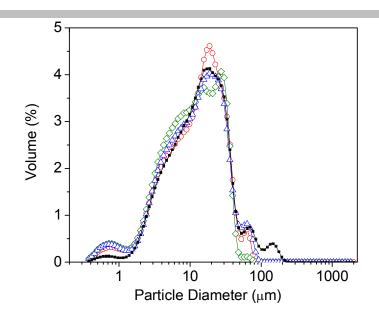




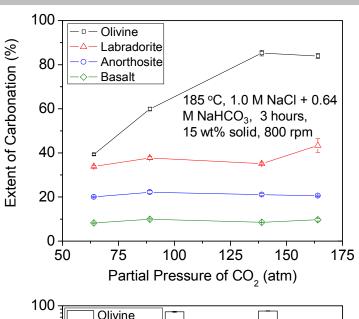
Effect of NaHCO₃ on Olivine Carbonation

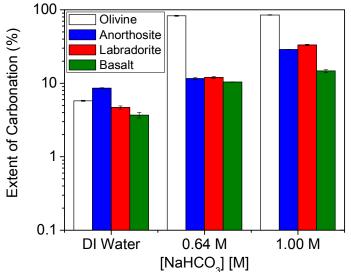
- Role of NaHCO₃ is that of a pH buffer and a carbon carrier.
- NaHCO₃ facilitates shifts in pH to favor mineral carbonation

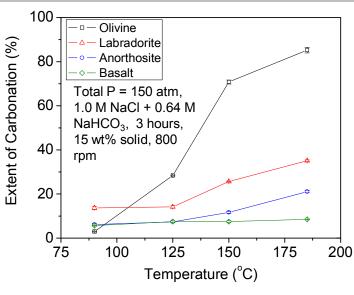


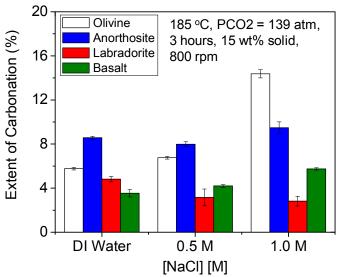

- Surface area decreased from 3.77, 1.63, 1.51, 1.20, 1.15, 1.15 m2/g in DI Water, 0.32 M, 0.48 M, 0.64 M, 1.0 M and 2.0 M NaHCO₃
- Progressive decrease in pore volume and increase in particle size with increasing carbonation

Effect of NaCl on Olivine Carbonation

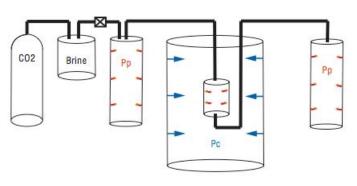



- Significant precipitation of iron oxide in the absence of NaHCO₃ which may have limited reactivity of mineral
- Inadequate pH buffering and availability of carbonate ions which limits extent of olivine carbonation



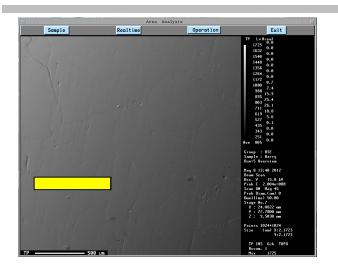


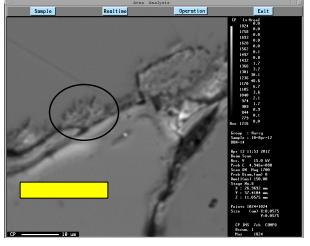
Effect of CO₂ Partial Pressure, Temperature and Additives on Various Minerals

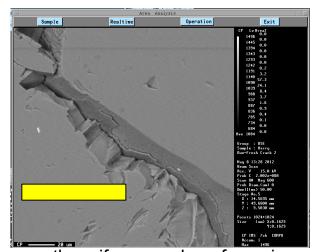


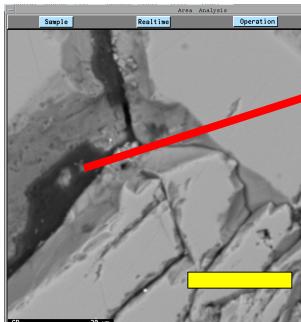
Reactive Cracking

Objective: Assess the effect of high CO₂ fluids on the behavior of ultramafic rocks such as <u>hydrostatic compaction</u>, <u>constant strain rate and constant displacement</u> creep experiments on thermally cracked dunite saturated with CO₂-saturated brines




- ➤ Autolab 1500 triaxial deformation apparatus from New England Research (NER)
- Retrofitted fluid mixing system
- ➤ Independent T, P_{CO2} control
- ➤ 15 MPa confining pressure
- > 10 MPa pore pressure
- >150°C Temperature
- ➤ Thermally cracked dunite with ~ 1 mm grain size


Deformation of Rocks due to Reactive Cracking



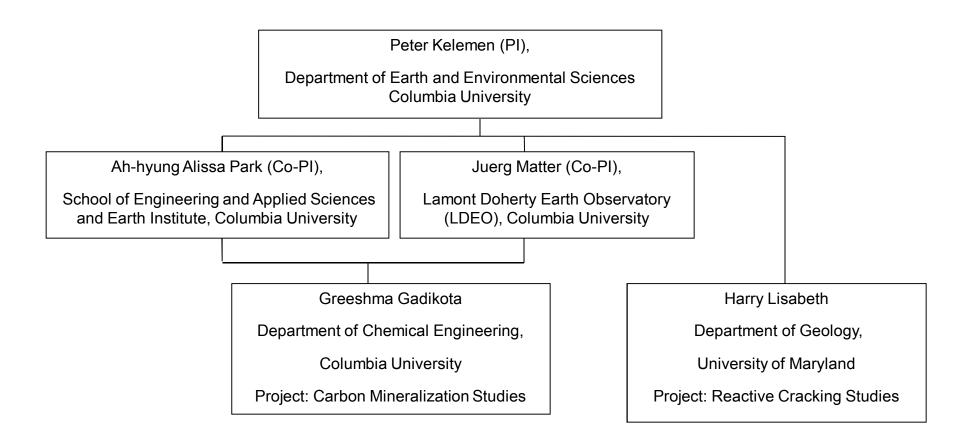
Deformed with reactive brine

 Pitting, signs of dissolution of olivine

smooth, uniform crack surfaces in thermally cracked dunite supported by DOE DE-FE0002386 & C11E10947

Accomplishments to Date

- Quantified extents of carbonation of the olivine and anorthite as a function of temperature, partial pressure of CO₂ and in the presence of various additives
- Demonstrated significant changes in pore structure, morphology and particle size occur after carbonation and dissolution
- Initial mineral dissolution rates are substantially higher than longer-term rates with preferential leaching of Mg which has implications for long-term storage of CO₂ in geologic formations
- Determined that reactive brines cause samples to deform more rapidly due to olivine dissolution


Summary

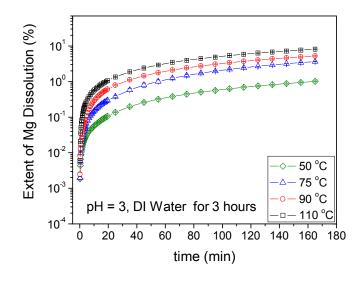
- Higher temperatures and presence of additives such as NaCl and NaHCO₃ have a significant impact on enhancing mineral carbonation
- Significant reduction in pore size and surface area after carbonation is evident
- In terms of reactivity with CO₂: olivine > labradorite> anorthosite > basalt
- Reactive brines cause samples to deform more rapidly due to olivine dissolution
- Rapid deformation is apparently due to olivine dissolution, reducing solid-solid contact area along fractures
- Permeability drops due to mechanical compaction are delayed; there is a sudden loss of connectivity, but not of porosity

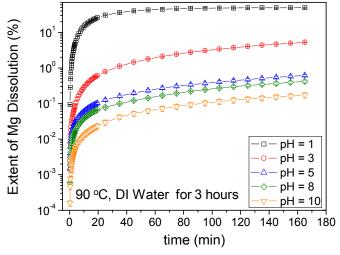
Organization Chart

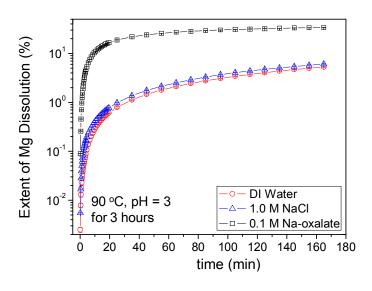
Gantt Chart

	Year I				Year II					Ye	ar III		Year 4 (NCE)			
Tasks		Qt2	Qt3	Qt4	Qt1	Qt2	Qt3	Qt4	Qt1	Qt2	Qt3	Qt4	Qt1	Qt2	Qt3	Qt4
Task 1.0 Project Management, Planning and Reporting																
Task 2.0 Laboratory Experiments on Carbonation Kinetics of Peridotite and Basalt																
Subtask 2.1 Selection of rocks to be studied																
Subtask 2.2. Determination of mineralization with varying pressure																
Subtask 2.3 Determination of mineral rates under varying temperature																
Subtask 2.4 Analysis of carbonated samples																
Task 3.0 Laboratory Study of Catalytic Effects on Carbonation Kinetics of Peridotite and Basalt																
Subtask 3.1 Selection of minerals and basaltic glass to be studied																
Subtask 3.2 Mineralization as a function of varied mineral composition																
Subtask 3.3 Mineralization as a function of varied pressure																
Subtask 3.4 Varied temperature and/or combined variables																
Subtask 3.5 Analysis of carbonated samples																
Task 4.0 Laboratory Testing of "Reactive Cracking" Hypothesis																
3. Subtask 4.1 Initial experiments																
Subtask 4.2 Experiments with varying fluid pressure																
Subtask 4.3 Experiments with deviatoric confining pressure																
Subtask 4.4 Analysis of carbonated samples																

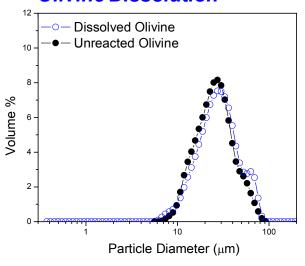
Bibliography

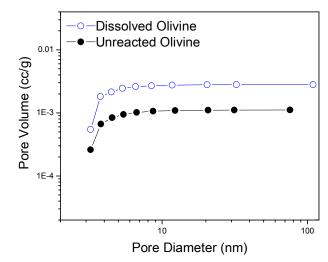

Journal, multiple authors:


- Gadikota, G., Matter J., Kelemen P.B., and Park, A-H.A, Chemical and Morphological Changes during Olivine Carbonation as CO2 Storage in the presence of NaCl and NaHCO3, Energy and Environmental Science (To be Submitted)
- Kelemen, P.B. and G. Hirth, Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation, Earth Planet. Sci. Lett 345–348, 81–89 2012
- Kelemen, P.B., J. Matter, E.E. Streit, J.F. Rudge, W.B. Curry, J. Blusztajn, Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage, Ann. Rev. Earth Planet. Sci. 39, 545–76, 2011
- Paukert, A.P., J.M. Matter, P.B. Kelemen, E.L. Shock and J.R. Havig, 2012, Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman: Chem. Geol., in press 2012
- Streit, E., P.B. Kelemen, and J. Eiler, Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman, Contrib. Mineral. Petrol., online, DOI 10.1007/s00410-012-0775-z, 2012, print publication in press.

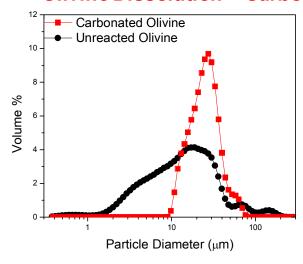


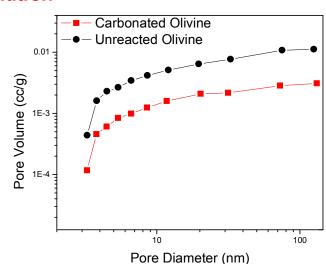
Effect of Temperature, pH and Chemical Additives on Olivine Dissolution Behavior


- High conversions achieved in the first 20 min after which the reaction rates decrease
- Initial surface reaction controlled mechanism and then diffusion across passivation layer dominates dissolution
- Increasing temperature, decreasing pH and addition of chelating agents such as Na-oxalate favor dissolution



Changes in Pore Volume and Particle Size Due to Mineral Dissolution and Carbonation


Olivine Dissolution



- Particle size unchanged due to dissolution
- Pore volume increases with dissolution
- Magnesite crystal growth increases the particle size
- Fine particles < 10 µm react much faster to form carbonates

Olivine Dissolution + Carbonation

- Pore volume is considerably reduced after carbonation due to the formation of carbonate crystals in the pores
- Changes in pore volume have implications for CO₂ storage in geologic reservoirs