Radiocarbon as a Reactive Tracer for Tracking Permanent CO₂ Storage in Basaltic Rock

DE-FE0004847

Juerg M. Matter The Earth Institute, Lamont-Doherty Earth Observatory, Columbia University

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Presentation Outline

- Benefit to the Program
- Project Overview
- The CarbFix Project, Iceland
- Monitoring & Verification Results
- Accomplishments to Date
- Summary

 The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO₂. These techniques contribute to the Carbon Storage Program's effort of ensuring 99% storage permanence.

Benefit to the Program cont.

- We are developing and testing the feasibility of carbon-14 (¹⁴C) as a reactive tracer for quantitative monitoring and accounting of geological CO₂ storage.
- None of the currently applied CO₂ monitoring approaches are able to provide a surveying tool for dissolved or chemically transformed CO₂.
- The technology, when successfully demonstrated, will provide an improvement over current monitoring practices.

Project Overview: Goals and Objectives

- Monitor subsurface CO₂ transport with trifluormethylsulphur pentafluoride (SF₅CF₃) and sulfurhexafluoride (SF₆).
- Testing carbon-14 (¹⁴C) as a reactive tracer for geochemical reactions (including mineral carbonation) caused by CO₂ injection at the CarbFix pilot injection site, Iceland.
- Drilling small diameter coreholes into injection zone for mineral carbonation study on core samples.
- Quantify the extent of mineral carbonation in the CarbFix basalt CO₂ storage reservoir.
- This research leads to advanced monitoring and accounting of geologic CO₂ storage.

MINERAL CO₂ SEQUESTRATION INTO BASALT: THE CARBFIX PROJECT

 ~200 tons of CO₂ injected in January 2012
~1500 tons of CO₂ will be injected between January – December 2013

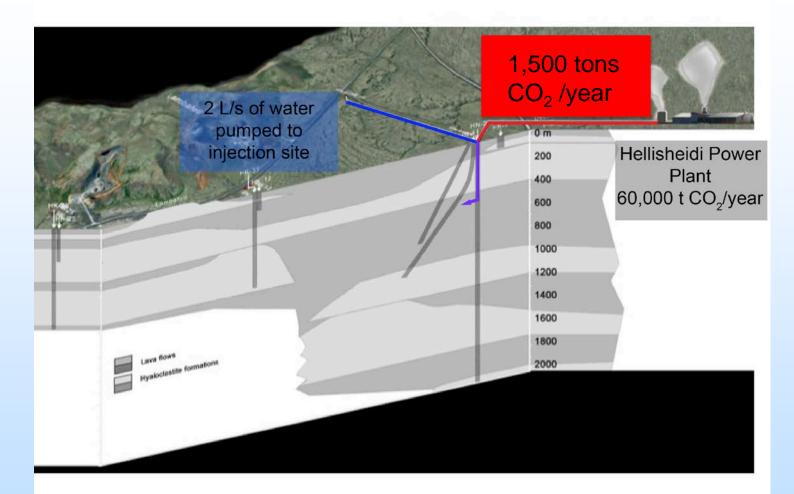
CarbFix Partners

- Orkuveita Reykjavikur (Reykjavik Energy), Iceland
- University of Iceland, Iceland
- CNRS, University of Toulouse, France
- Columbia University, New York, USA

Groundwater

Target zone for CO₂ sequestration identified at 400-800 m depth

> Gas injected fully dissolved in water into target zone

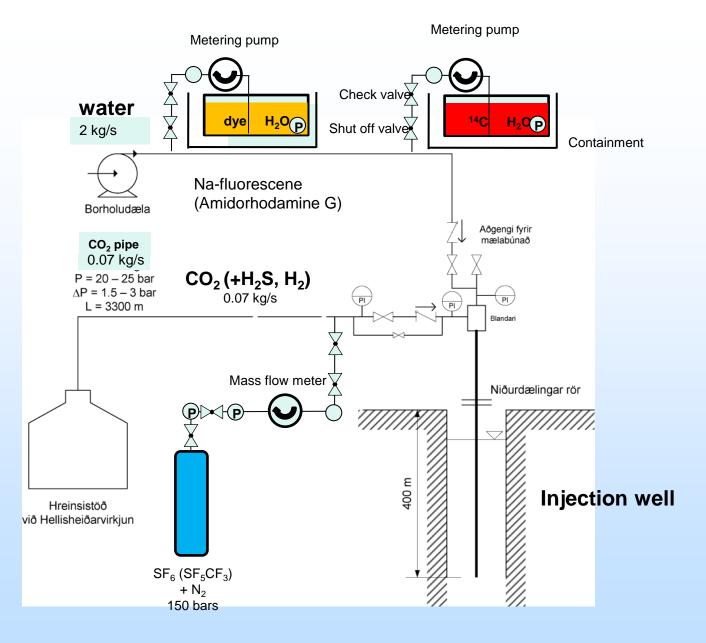

2 kg/s of CO₂ from Condensers 0.07 kg/s 2.2 thousand tons per year

800 kg/s of steam, gas and water from deep and hot (>240 °C) geothermal wells

Hellisheidi geothermal power plant

Sigfús Már Pétursson

Injection Process

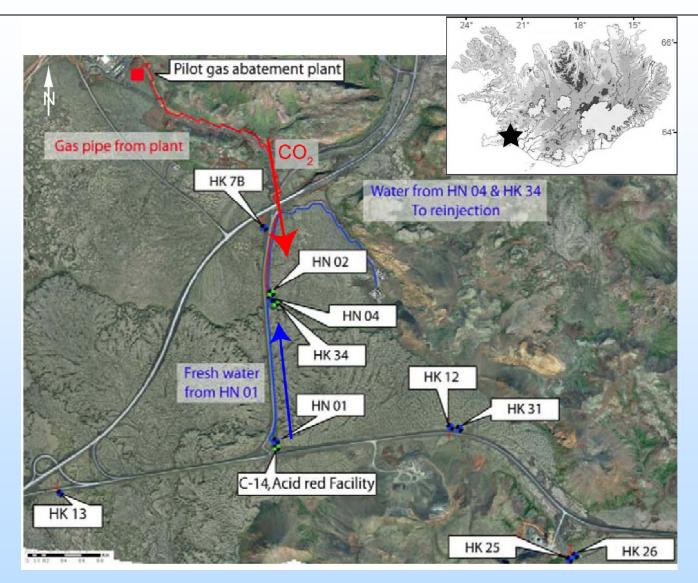


distance between injection and first monitoring well is 150 m

Alfredsson et al. (2012)

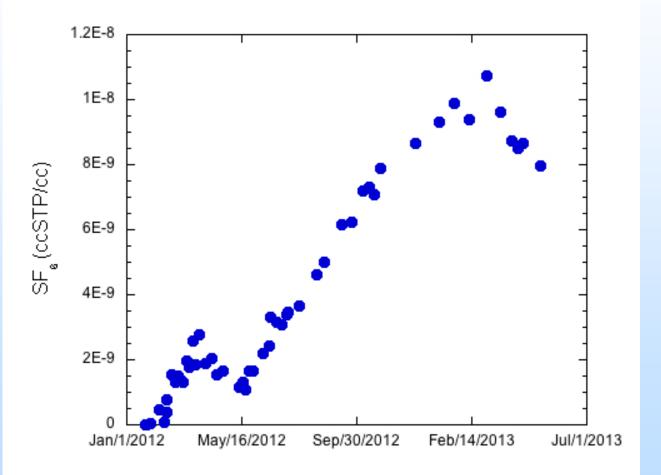
Tracer injection system

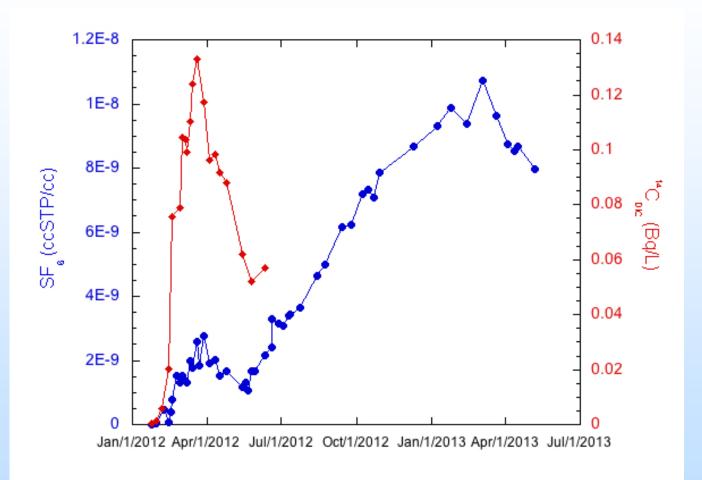
Injection Phases


Phase I pure CO₂ injection of ~200 tons (January – February 2012) SF₆ & ¹⁴C tracers

Phase II

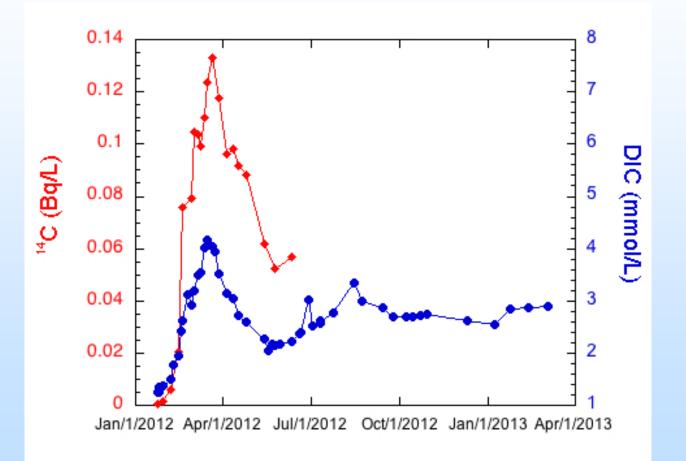
 CO_2+H_2S injection (80% CO_2 , 20% H_2S) ~1500 tons of CO_2 (2013) SF_5CF_3 , AmidRhod G & ¹⁴C


Monitoring Wells

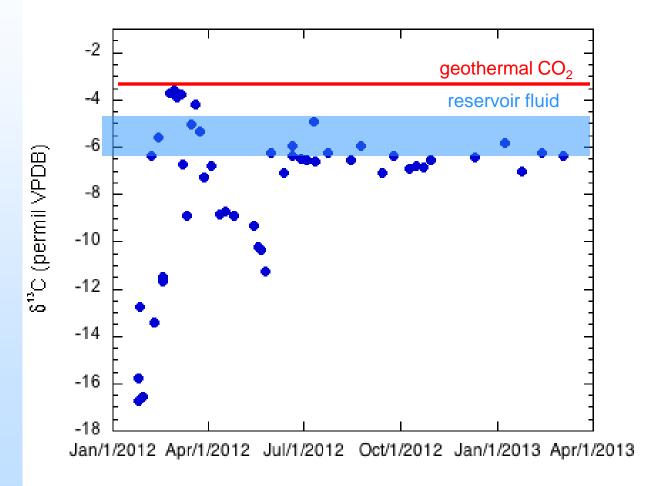


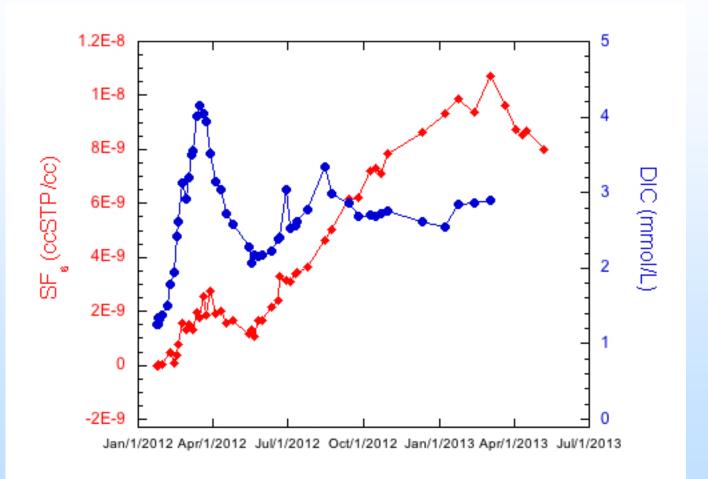
Phase I: SF₆ Monitoring Results

• Goal: Monitor advective and dispersive transport of injected solution



Phase I: ¹⁴C Monitoring


• Goal: Monitor CO₂-fluid-rock reactions (carbon mass balance)



Phase I: $\delta^{13}C_{DIC}$ Monitoring Results

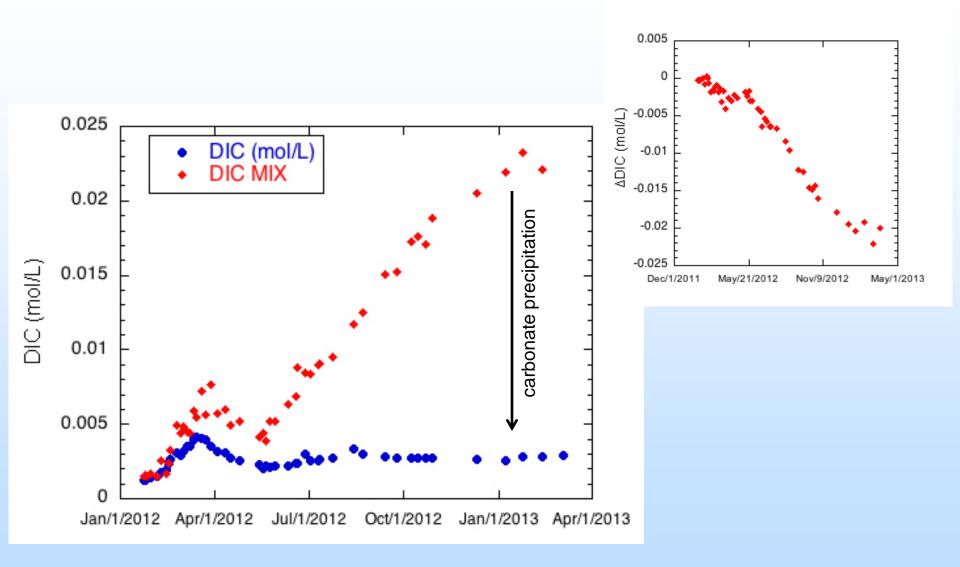
• Goal: Monitor CO₂-fluid-rock reactions

Carbon Mass Balance

1. Calculating mixing between injected solution and reservoir fluid using SF_6

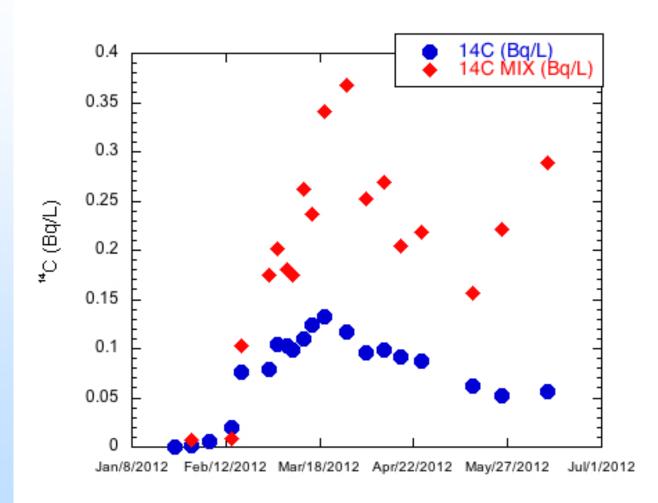
$$[SF_6]_i = X[SF_6]_{IS} + (1 - X)[SF_6]_{BW}$$

2. Calculating theoretical dissolved inorganic carbon concentration (DIC_{mix}) due to pure mixing in the reservoir


$$DIC_{mix} = X_{SF6} \cdot DIC_{IS} + (1 - X_{SF6}) \cdot DIC_{BW}$$

3. Calculating difference between measured and theoretical DIC

$$\Delta DIC = DIC_{sample} - DIC_{mix}$$

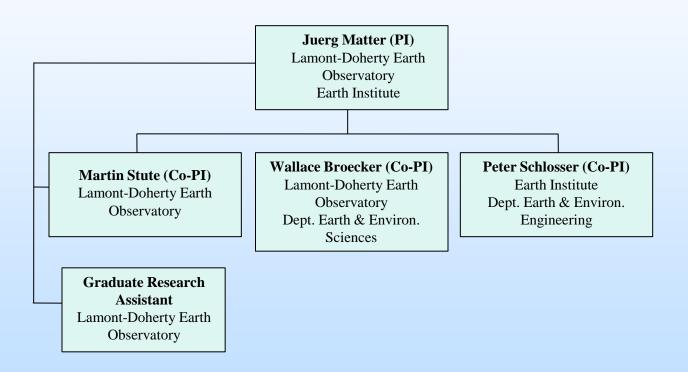


Carbon Mass Balance

¹⁴C Mass Balance

Accomplishments to Date

- Pure CO₂ injection (Phase I) was successfully completed.
- The mixed gas CO₂+H₂S injection (Phase II) is currently being performed.
- Continuous collection of fluid and gas samples for chemical and tracer analyses is being conducted in injection and monitoring wells for Phase I and Phase II injection.
- Initial and major breakthrough of CO₂ from Phase I in the first monitoring well occurred in April 2012 and February 2013, respectively.
- Initial breakthrough of injected CO₂ from Phase II occurred in August 2012.


Summary

- Preliminary analysis of the tracer data from the Phase I injection indicates CO₂ mineralization via CO₂-fluid-basalt reactions.
- Mass balance calculation reveals that over 85% of the injected CO₂ from Phase I has been mineralized.
- The developed and applied tracer techniques of non-reactive (SF₆, SF₅CF₃) and reactive tracers (¹⁴C) allows for quantitative monitoring and verification of CO₂-fluid-rock reactions.
- The developed and applied tracer techniques are successful surveying tools for dissolved and chemically transformed CO₂, leading to a quantification (mass balance) of stored CO₂ in geologic reservoirs.

Appendix

Organization Chart

Gantt Chart

	BP I						BP II								BP III			
Tasks	Qt 1	Qt2	Qt3	Qt4	Qtr5	Qt1	Qt2	Qt3	Qt4	Qt5	Qt6	Qt7	Qt8	Qt1	Qt2	Qt3	Qt4	
Task 1.0 Project Management, Planning and Reporting							Е					J						
Task 2.0 Monitoring the CO ₂ movement with SF ₅ CF ₃ in the basalt formation							Е					J						
Subtask 2.1 Monitoring the SF ₅ CF ₃ concentration in target injection interval and overlying shallow aquifer		А						F		Ι				М				
Subtask 2.2 SF3CF3 Data Analysis			С					G		Ι				М				
Task 3.0 Monitoring of geochemical reactions and in situ mineral carbonation with ¹⁴ C							Е					J						
Subtask 3.1 Monitoring the ¹⁴ C concentration in target injection interval and overlying shallow aquifer			В					F		Ι				М				
Subtask 3.2 Carbon-14 and d ¹³ C Analysis					D			G		Ι		к		М				
Task 4.0 Mineral carbonation studies on core samples Subtask 4.1 Wireline core drilling																		
Subtask 4.1.1 Wireline core drilling																		
Subtask 4.1.2 Drilling and coring									н				L	N				
Subtask 4.2 Mineralogical and geochemical analysis of core samples																0		
Task 5.0 Quantification of mineral carbonation in reservoir																Р		