TAGGING CO₂ TO ENABLE QUANTITATIVE INVENTORIES OF GEOLOGICAL CARBON STORAGE DOE AWARD #DE-FE0001535

Cantwell Carson The Earth Institute Columbia University

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 20-22, 2013

Presentation Outline

- Benefit to the program
- Project overview: Why ¹⁴C for MVA?
- Technical status: Cartridges, injections, lasers
- Summary
- Organizational chart
- Collaborators

Benefit to the Program

 Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.

Permanent storage of CO_2 can be demonstrated by adding carbon-14 (¹⁴C) prior to injection. This research project aims to demonstrate this by tagging fossil CO_2 with ¹⁴C at a field site. When completed, this system will show that ¹⁴C can be a safe and effective tracer for sequestered CO_2 . A laser-based ¹⁴C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent CO_2 storage permanence in the injection zone(s) (Goal).

- Project Overview: Why use ¹⁴C in MVA?
- Radiocarbon, or ¹⁴C :
 - Long half-life radio isotope: $\tau_{1/2}$ =5730 years
 - Produced naturally by cosmic radiation
 - Made artificially by neutron capture
 - Ambient concentration: ${}^{14}C/{}^{12}C \approx 10^{-12}$
 - Concentration in fossil fuels: ${}^{14}C/{}^{12}C < 10^{-14}$
- Fossil-based CO₂ has ~100x less ¹⁴C than natural (biogenic) CO₂
- ¹⁴CO₂ is chemically identical to ¹²CO₂ and can indicate fixation

- Tag intended at \approx 1 part per trillion
 - This limits subsurface concentration to ambient levels
 - Makes fossil based CO₂ look like bio-based CO₂
 - Requires 1 g ¹⁴CO₂ per million ton CO₂
- 1-day tag limits liability in the event of accidental release

- ¹⁴C filling station
 - Produced calibrated SF₆-CO₂-water tag cartridges
 - Produced ${}^{14}CO_2$ -water solutions with 190 pCi, 9.3 nCi and 37 nCi ${}^{14}CO_2$

- Tagging very large stream with very small tag (1 in 10¹²)
 - 1 g ${}^{14}CO_2$ for 1 M ton CO2
- Needs to demonstrate accuracy and precision
- Potential injection into super critical or liquid CO₂
- Needs to be demonstrated at lab scale and in field test

- Bench-scale high-pressure flow
 loop
 - Turbulent flow regime
 - Pressurized CO₂ flow loop to 1457 psi CO₂, 33 °C, supercritical regime
 - Injected SF₆ solution into super critical CO₂ at the 100 part-per-trillion level with error of <5%

- We need a method to monitor, record, and control injection on-line and in real time
- Verification and accounting necessary at injection
- Standard methods are not viable for this application:
 - Accelerator Mass Spectrometry is a batch method
 - Liquid Scintillation Counting is too slow
- Development of laser-based currently pursued

- Development of ¹⁴CO₂ Detector
- IntraCavity OptoGalvanic Spectroscopy (ICOGS)
 - Initial results were very promising
 - Potential for fast, inexpensive, online ¹⁴C measurement at the part-pertrillion (Modern) level

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY

Development of ¹⁴CO₂ Detector

We can measure: Laser power Laser wavelength Cell pressure Sample flow rate OG voltage

We can control: Laser cavity position Laser modulation mode Cell pressure Sample flow rate Cell discharge power

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY

- Laser-based ¹⁴CO₂ detector
 - Assembled Intra-Cavity Opto-Galvanic Spectrometer (ICOGS)

Not shown:
Turbo pump
NI CompactDAQ
NI programmable power supplies

- Detection circuitry
 - Designed new filtering and amplifying circuitry for OG signal
 - Revealed a large transient at short times
 - Attributed to the response of the buffer gas to large changes in laser power (~40 W)
 - Appears to dominate signal when the laser is operated by generating a series of laser pulses ("Chopping mode") at ~100Hz

The new amplifier reveals a large transient response at short times

- Cavity Modulation
 - Developed new signal generation method: Cavity modulation
 - Generates a signal by changing the length of the laser at ~100 Hz
 - Produces a smoothly varying change in power and laser wavelength
 - Signal generation with cavity modulation was confirmed by external OG cell measurement on ¹²CO₂.
 - Similar signal to noise ratio when measuring CO₂ concentration.

The deviation for cavity modulation (red) is shown against that of laser chopping (green) for ${}^{12}CO_2$.

- Development of ¹⁴CO₂
 Detector
 - We were unable to see a signal in Cavity modulation
 - Indicates that most, possibly all, of the measured signals have been background fluctuations
 - Comparison with HITRAN data highlights an adjacent ¹²CO₂ absorbance line, 200 – 111, P(19)e
 - Work to explain role of P(19)e in ICOGS data is underway...

Scans do not reveal an intracavity response with cavity modulation

- Prospects for ¹⁴CO₂ Detector
 - Recent publications out of Uppsala University in Sweden have also highlighted this lack of reproducibility
 - Earlier results from Columbia are now attributed to small confounding pressure changes between samples
 - We are currently looking to use highly enriched samples to establish a quantitative lower limit of detection
 - Detection may be easier on other ¹⁴CO₂ laser lines away from ¹²CO₂ lines

 ¹²CO₂ background lower at other ¹⁴CO₂ laser lines.

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY

851.475

851.48

851.485

851.49 WN, cm-1

-6

-7

-8

-9

-10

-11

-12

851.47

log(Absorption)

- Future Plans
 - Carry out ¹⁴C detector experiments with highly enriched samples (>1k Modern)
 - Inject ¹⁴CO₂ into laboratory high-pressure flow loop
 - Inject ¹⁴CO₂ at CarbFix pilot injection site in Iceland

Organizational Chart

Columbia University

Klaus Lackner, PI: Oversight and development of 14C-detector

Alissa Ah-Hyung Park, co-PI: Construction of high-pressure flow loop

Juerg Matter, co-PI: Field tests at CarbFix site in Iceland

Barnard College

Martin Stute, co-PI: Construction of 14C detector and filling station design

Cantwell Carson, postdoc: Construction of 14C detector

Yinghuang Ji, student: Construction of filling station, testing flow loop

Collaborators:

- University of Groningen
 - Harro Meijer
 - Dipayan Paul
- Access Laser
 - Yong Zhang

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY

Appendix

- Gantt Chart
- Bibliography

Gantt Chart

	Year 1								Year 2															
		Q1 Q2			Q3		Q4			Q1			Q2		2 Q3		Q4			Q5				
Tasks	Oct	Nov	Dec	Jan	Feb	Mar	May	Jun	Int	Aug	Sep	Oct	Nov	Dec		Mar	Anr	May	nn	In	Aug	Sep	Oct	Nov
Task 1.0 - Project Management, Planning, and Reporting																								
Subtask 1.1 Project Management Plan																								
Subtask 1.2 Reporting and Budgets																								
Subtask 1.3 Presentation and Briefings																								
Subtask 1.4 Final report																								
Task 2.0 - Design of the ¹⁴ C Supply Units and Microcartridge Systems for Tracer Injection																								
Subtask 2.1 Construction of a filling station																								
Subtask 2.2 Design and fabrication of a syringe system to hold dissolved tracer gas																								
Subtask 2.3 Design and fabrication of a microcartridge system to hold compressed tracer gas																								
Subtask 2.4 Optimization of selected injection system																								
Task 3.0 - Laboratory Scale Evaluation of Injection Systems																								
Subtask 3.1 Design and Construction of High Pressure Flow System for Mixing																								
Subtask 3.2 Testing Supply/Injection System with SF ₆																								
Subtask 3.3 Testing Supply/Injection System with 14CO2																								
Task 4.0 - Development of ¹⁴ CO ₂ Detection System																								
Task 5.0 - Field Tests of Developed ¹⁴ CO ₂ Tagging Systems																								
Task 6.0 - Hazard and Environmental Analyses																								

		Year 3												
		Q1			Q2			Q3				Q4		
	Tasks		Feb	Mar	Apr	May	Inn	Inc	Aug	Sep	Oct	Nov	Dec	
Task 1.0 - Project Management, Planning, and Reporting														
	Subtask 1.1 Project Management Plan													
	Subtask 1.2 Reporting and Budgets													
	Subtask 1.3 Presentation and Briefings													
	Subtask 1.4 Final report													
Task 2.0	0 - Design of the ¹⁴ C Supply Units and Microcartridge Systems for Tracer Injection													
	Subtask 2.1 Construction of a filling station													
	Subtask 2.2 Design and fabrication of a syringe system to hold dissolved tracer gas													
	Subtask 2.3 Design and fabrication of a microcartridge system to hold compressed tracer gas													
	Subtask 2.4 Optimization of selected injection system													
Task 3.0	0 - Laboratory Scale Evaluation of Injection Systems													
	Subtask 3.1 Design and Construction of High Pressure Flow System for Mixing				_		_	_						
	Subtask 3.2 Testing Supply/Injection System with SF ₆													
	Subtask 3.3 Testing Supply/Injection System with 14CO2													
Task 4.0	0 - Development of ¹⁴ CO ₂ Detection System													
Task 5.0	0 - Field Tests of Developed ¹⁴ CO ₂ Tagging Systems													
Task 6.0	0 - Hazard and Environmental Analyses													

Bibliography

• Journal articles:

- Carson, C. G., Lackner, K. S., DeGuzman, M., Paul, D., Murnick, D., 2012, Double flow-though cell for intra-cavity opto-galvanic spectroscopy. Review of Scientific Instruments, *Submitted*
- Ji, Y, Carson, C. G., Stute, M., Lackner, K. S., Hollow fiber membrane microvolume water-gas solution system for sub-surface tag production. Environmental Science & Technology, *in preparation.*