Conversion of CO₂ into Commercial Materials using Carbon Feedstocks DE-FE0004329

Brian Turk Research Triangle Institute

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Presentation Outline

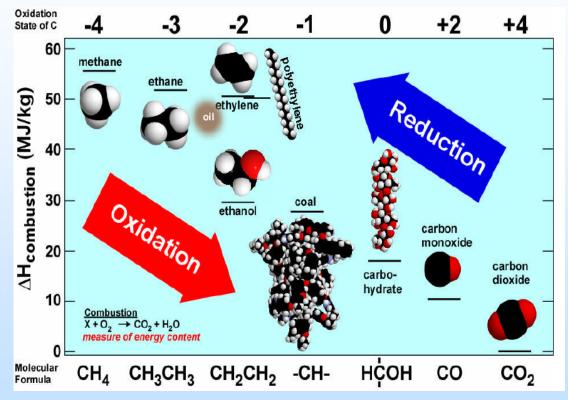
- Project benefits and objectives
- Carbon reactivity studies
- Catalyst mechanism studies
- Catalyst development
- Test results
- Summary

Benefit to the Program

- Program goal: Reduce CO₂ emissions by developing beneficial uses that meet the DOE net cost metric of \$10/MT for captured CO₂ that will mitigate CO₂ emissions in areas where geological storage may not be an optimal solution
- Benefits statement: Development of a commercial process for converting CO₂ and a carbon source into a commodity chemical at a cost of < \$10 / MT of CO₂.

Accomplishments to Date

• CO₂ utilization with carbon feedstocks


- Evaluated carbon reactivity for various carbon sources
- Demonstrated significant increase in reactivity with catalysts
- Develop transport reactor process maximizing carbon utilization and reactivity
- Completed preliminary techno-economic analysis for production of CO, syngas, methanol, and methyl methacrylate
- Mechanistic studies of catalyst activity
 - Demonstrated oxygen extraction from CO₂
 - Demonstrated hydrocarbon oxidation with extracted oxygen
- Application of catalytic CO₂ oxidation of hydrocarbons for bulk chemical production
 - Modified catalyst formulation for lower temperature activity
 - Demonstrated production of
 - Syngas at 600°C
 - Alkanes and alkenes at 780°C

Project Overview: Goals and Objectives

Overall goal: Develop a process that utilizes carbon as a reductant for CO₂ to produce CO at a net cost of less than \$10/MT

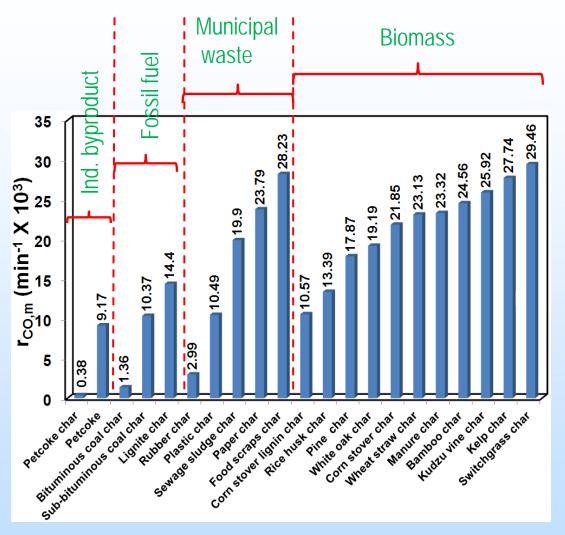
- Objectives:
 - Evaluate and identify the most reactive carbon sources for CO₂ gasification
 - Evaluate the potential to increase CO_2 gasification reactivity with catalysts
 - Demonstrate the economic feasibility of CO₂ gasification for the production of CO
 - Evaluate sensitivity of process economics to assist experimental program
 - Evaluate economic feasibility of producing commodity chemicals
 - Develop catalysts for direct production of methanol (or other commodity chemicals) from CO₂ and hydrocarbons

Challenges of CO₂ Utilization

CO₂ Properties

- Most fully oxidized form of carbon
- Extremely chemically stable

Challenges


CO₂ conversion requires abundant low cost reducing agents, energy (heat or electricity), and catalysts

Constraints

Production of reducing agents, energy, and catalyst requires minimal CO₂ footprint

Banholzer, 2008

Carbon Reactivity Ranking

- Reactivity for different carbon sources ranges from about 0.0004 to 0.03 min⁻¹ for CO production
- Petcoke char was the least reactivity
- Coal sources have intermediate reactivity
- Biomass and municipal waste has the largest range of carbon reactivity

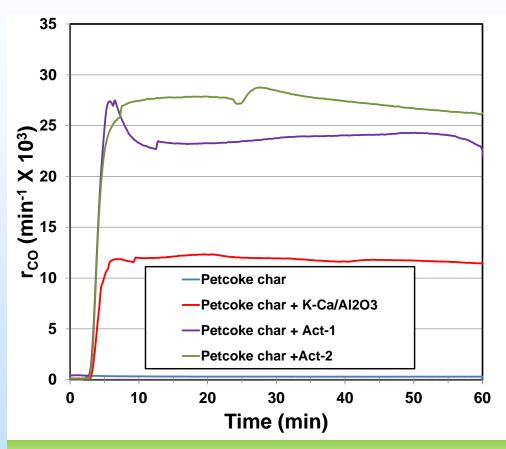
$$r_{CO,m} (min^{-1} \times 10^{3}) = \frac{28 \times F_{CO,m}}{22.414 \times W_{0}}$$
$$F_{co,m} = CO \text{ flow rate (SLPM)}$$
$$W_{0} = \text{Initial sample mass (g)}$$

Reaction conditions:

WHSV=2.36 hr⁻¹; T=800 °C; P=1 atm

Catalyst Screening Tests

	Reactivity
Catalyst	r _{co, m} (min⁻¹ x 10³)
Cat-1	19.15
K-Ca/Al ₂ O ₃	12.34
Cat-2	11.29
Cat-3	9.43
Cat-4	8.24
Cat-5	7.95
Cat-6	5.13
Cat-7	4.55
Cat-8	2.19
Cat-9	1.86
None	0.38
Reaction conditions:	

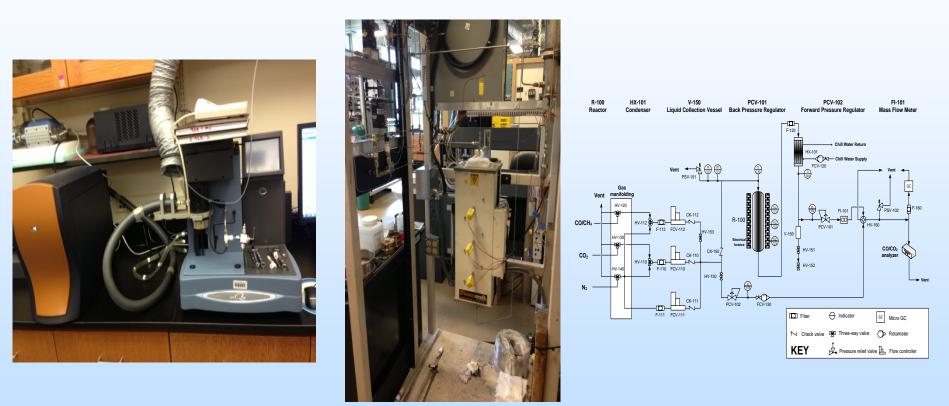

Reaction conditions:

Carbon source: Petcoke char; WHSV=2.36 hr⁻¹; T=800°C; P- 1atm

- Petcoke char used because of its low reactivity
- K-Ca/Al₂O₃* (best performing catalyst in the literature)
- Demonstrated that catalytic effect improves performance of more reactive carbon sources

*J. Wang, et al., *Fuel*, 89 (2010) 310-317

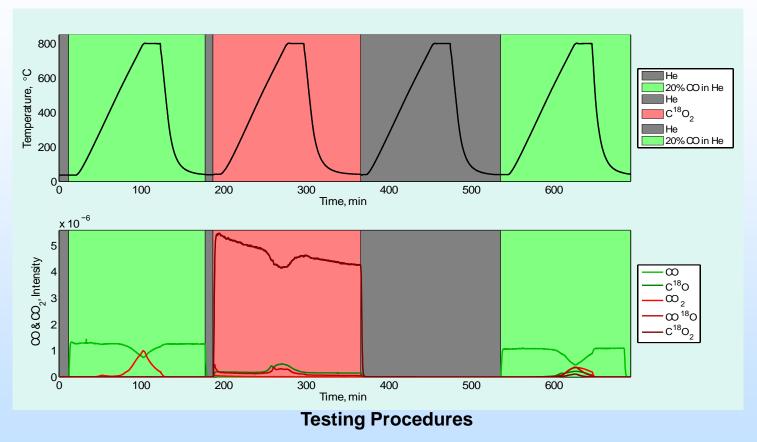
Evaluation of Reaction Mechanism



Reaction conditions:

Carbon source: Petcoke char; WHSV=2.36 hr⁻¹; T=800°C; W_{cat}:W_{char}=1:1

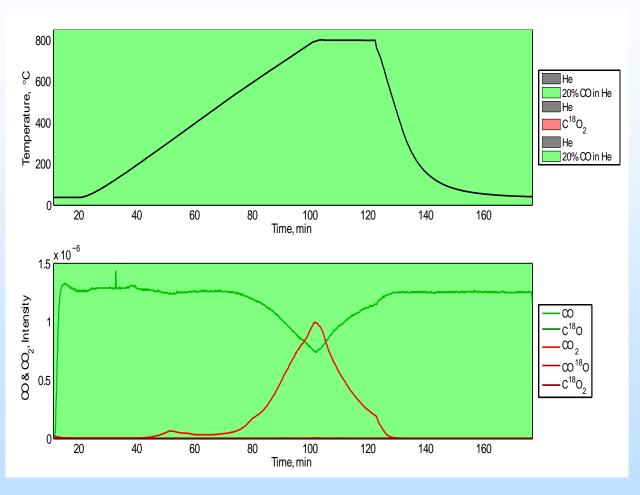
- Completed parametric testing to investigate reaction mechanism
 - Catalyst formulations
 - Carbon sources
 - Reaction temperature
- Isotopically labeled CO₂ studies


Reactor Systems

TGA-MS instrument used for analysis

Bench-scale Reactor

Isotopically-Labeled CO₂ Study



• For each test gas

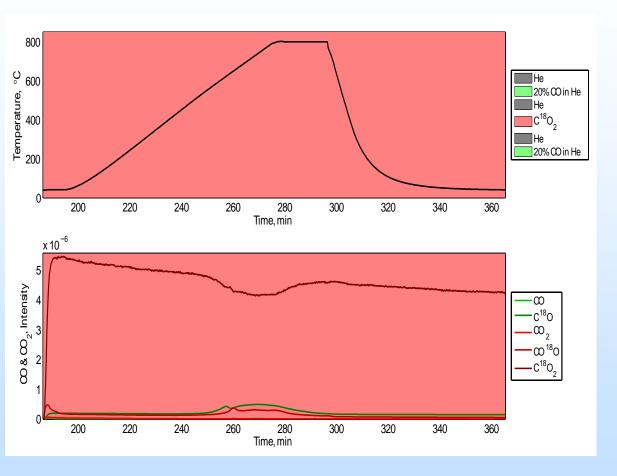
- Test gases
- Temperature ramp 30°C to 800°C
- CO (MW=28) [Green fill]
- Isothermal soak at 800°C for 5 minutes Isotopically labeled CO₂ (MW=48) [Red fill]
- Cool to room temperature

• He (MW=4) [Grey fill]

Initial Reduction with CO

Expectation

- Catalyst reduction
 - Consumption of CO
 - Production of CO₂


Observations

- Consumption of CO
- Production of CO₂

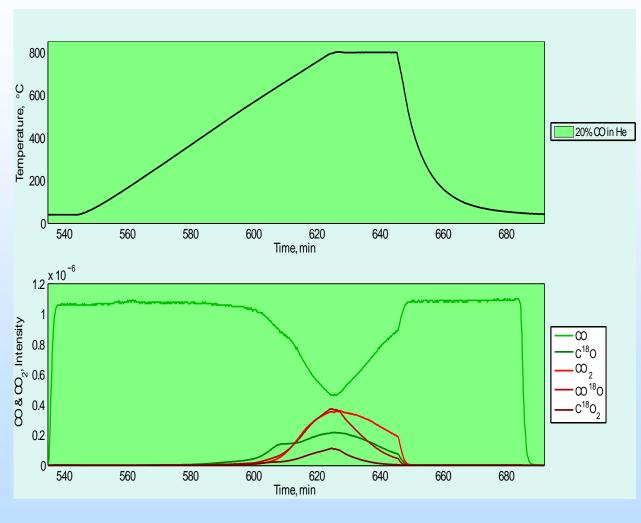
Interpretation

• Catalyst is reduced

Oxidation in Isotopically-Labelled CO₂

Expectation

- Oxygen extraction by reduced catalyst
 - Decrease in C¹⁸O₂
 - Increase in C¹⁸O


Observations

- Decrease in C¹⁸O₂ (Expected)
- Increase on C¹⁸O (Expected)
- Increase in CO¹⁸O (Unexpected)

Interpretations

- Reduced catalyst does extract oxygen from CO₂
- High oxygen mobility on catalyst

Second Reduction in CO

Expectation

- Catalyst reduction
 - Decrease in CO
 - Increase in CO_2 (CO_2 and $CO^{18}O$)

Observations

- Decrease in CO (Expected)
- Increase in CO¹⁸O and CO₂ (Expected)
- Increase in C¹⁸O₂ (Unexpected)
- Increase in CO¹⁸ (Unexpected)

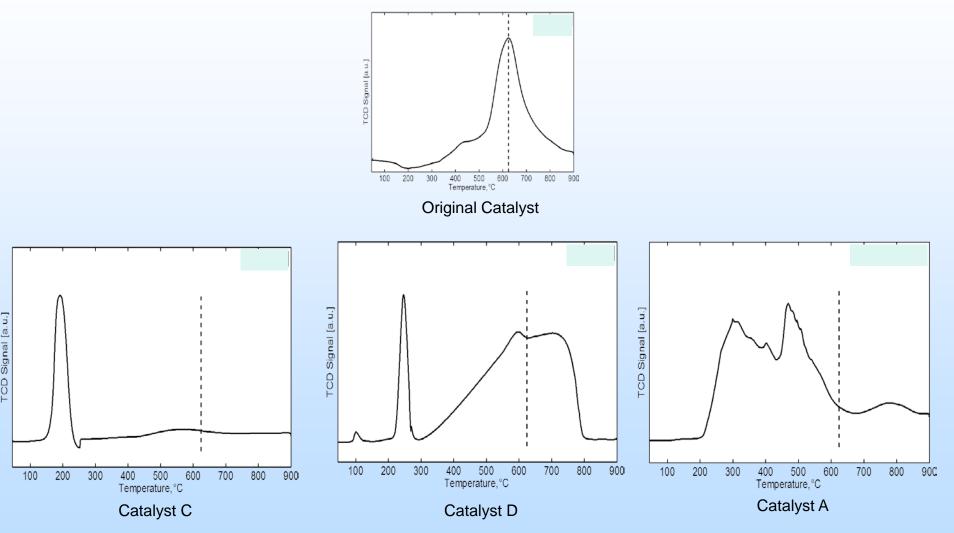
Interpretations

- Extracted oxygen from CO₂ is available for oxidation reaction
- Any available oxygen on catalyst will participate in oxidation
- Activation energy barrier exists

Results from Isotopically-Labeled CO₂ Study

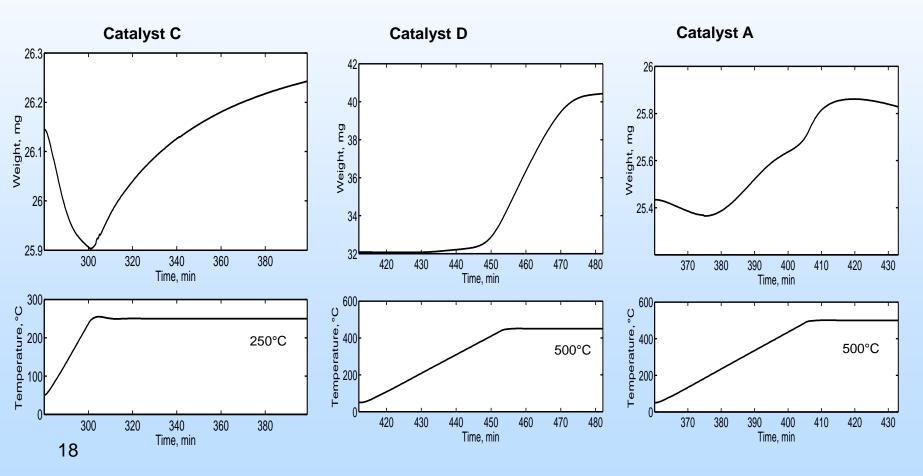
- Reduced catalyst does extract oxygen from CO₂
- All oxygen on catalyst surface are available for oxidation (including extracted oxygen)
- High mobility of oxygen on catalyst surface
- Activation energy barrier exists

Catalytic CO₂ oxidation of hydrocarbons is possible

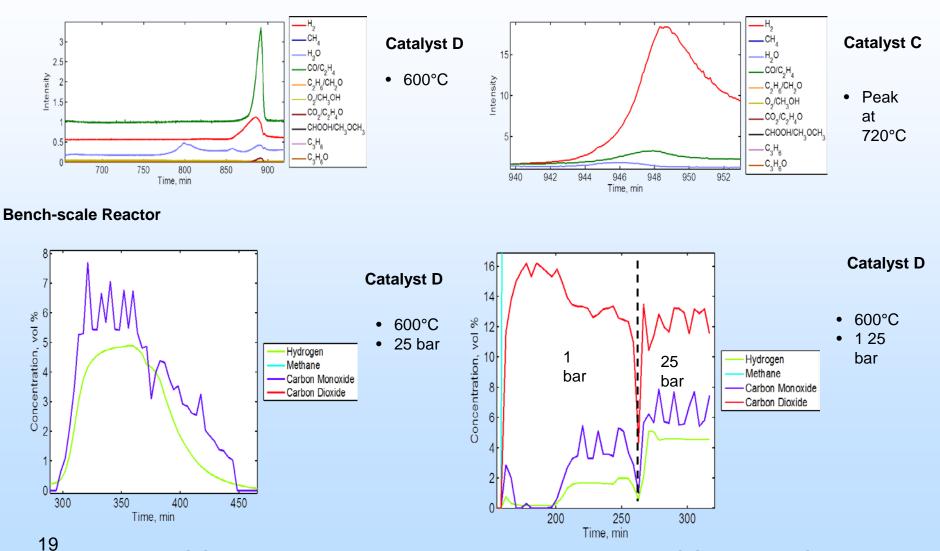

Challenges for practical/commercial application

- Lowering reaction temperature
 - Extraction for CO₂ extraction
 - Oxidation of hydrocarbon
- Maximizing activity
- Maximizing selectivity

Potential Families of New Catalyst Formulations


Catalyst Family	Objective	Rationale
A	 Lower reaction temperature for hydrocarbon oxidation Lower temperature for oxygen extraction from CO₂ 	Reported for oxidative methane coupling on other supports using air
В	 Lower reaction temperature for hydrocarbon oxidation 	Reported for low temperature oxidations of VOCs, water, and nitrogen oxides
С	Lower reaction temperature for hydrocarbon oxidation	CuOZnOAl ₂ O ₃ used for industrial synthesis of methanol from syngas as well as carbon dioxide
D	 Lower reaction temperature for hydrocarbon oxidation Lower temperature for oxygen extraction from CO₂ 	Reported for dry methane reforming on other supports and as co-catalysts with other metals than iron

Lower Reduction Temperature


Lower Temperature Oxidation Extraction from CO₂

Original catalyst extracted oxygen from CO₂ at 800°C

Production of Syngas from Methane and CO₂

TGA-MS

CO-rich syngas production from methane and CO₂ at 600°C

Production of Alkanes and Alkenes from Methane and CO₂

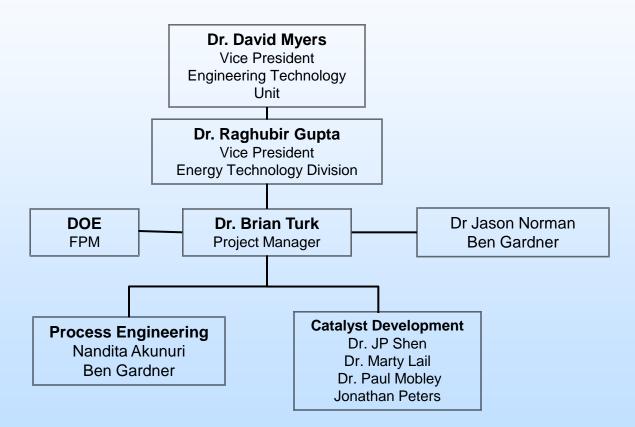
Time, min

Time, min

Summary

- Demonstrated catalytic oxygen extraction from CO₂
- Demonstrated utilization of oxygen extracted from CO₂ for oxidation of hydrocarbons
- Developed catalysts with increased activity at lower temperatures
 - Oxygen extraction
 - Hydrocarbon reduction
- Initiated testing for direct conversion of CO₂ and hydrocarbons into commodity chemicals

Future Plans


- Identify key commodity chemicals that can be produced with target catalyst families
- Optimize catalyst formulation for activity, conversion, and selectivity

Acknowledgments

- Darin Damiani (DOE)
- Marty Lail
- Paul Mobley
- JP Shen
- Jason Norman

Appendix

Organization Chart

Gantt Chart

								Р	has	еI															
Project Task Structure	Budget Period 1 (BP1)								Budget Period 2 (BP2)																
	Aug '10	I.	Oct '10	11' nel.		Apr '11	-	11' vlut		04 11	5	Jan '12		Apr '12		July '12	Oct '12	Jan '13	Apr '13		July '13	Oct '13	Jan '13		May '13
Task 1. Project Management and Planning					Ц															_				_	
Task 2. Experimental Evaluation of Carbon/CO ₂ Reaction Kinetics 2.1. Experimental Evaluation of Carbon Reactivity 2.2. Screening for Catalytic Compounds/Materials 2.3. Catalyst Development for Direct Conversion into Chemicals								_																	
Task 3. Process Modeling and Techno-Economic Evaluation 3.1. Process Configuration Development 3.2. Process Economics 3.3. Evaluation of Additional Chemicals Production																									
Milestone Log			Α	В				С	D	Ε		F			GH	1		I	J						K
Reporting			Q	Q	2	Q		Q		G	1	Q		Q		Q	Q	Q	Q		Q	Q	Q		Q FR

Q = Quarterly reports due one month after quarter's end; FR = Final report due three months after project's end.

Milestones: A. Updated Project Management Plan, B. Kickoff Meeting, C. Determination of carbon feedstock reactivity with CO2, D. Develop Aspen Plus simulation model for process configuration, E. Begin catalytic compound screening, F. Begin process economic evaluations, G. Determination of catalytic compound impact on carbon feedstock reactivity, H. Complete technoeconomic studies, I Demonstration of catalytic oxygen extraction from CO2, J Evaluation of catalytic hydrocarbon reduction. K Evaluation of catalytic selective oxidation

Bibliography

 Jian-Ping Shen, Marty Lail, Paul D. Mobley, Jason S. Norman, and Brian Turk, Carbon Dioxide Utilization Mediated by an Iron Mixed-Metal Oxide, submitted to Nature in July 31, 2013.