

Fundamental Studies in Support of GEO-SEQ

LBNL's Consolidated Sequestration Research Program (CSRP)

Project Number FWP ESD09-056

Tom Daley Lawrence Berkeley National Laboratory

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and
Infrastructure for CCS
August 20-22, 2013

Presentation Outline

- Benefits and Goals of Fundamental Studies
- Technical Status
 - Petrophysical Relationships
 - Geochemical Processes
 - Monitoring Instrumentation
- Accomplishments and Summary

Benefit to the Program

- Program goals being addressed:
 - Develop and validate technologies to ensure 99 percent storage permanence.
 - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness
- This research addresses these goals by supporting GEO-SEQ and GCS field studies using investigation of fundamental processes affecting storage and monitoring, including
 - Petrophysical relationships
 - Geochemical processes
 - Development of monitoring technology and tools

Core R&D: MVA and Geologic Storage

- DOE and the carbon sequestration community will benefit from:
 - a close working relationship with numerous domestic and foreign industrial and academic teams
 - interactions with and assistance given to other regional projects
 - publications and presentations made available to all parties interested in removing barriers to commercial-scale geologic carbon sequestration.

Project Overview: Goals

- Improve understanding of processes seen in field studies through use of laboratory scale work
 - petrophysical measurement
 - geochemical assessments.
- Develop field monitoring instrumentation
 - use demonstration scale pilots as R&D testing facilities while contributing to pilot goals

Project Overview: Objectives

- LBNL's Consolidated Sequestration Research Project (CSRP) aims to provides knowledge and lessons learned from performing distinct tasks with common overall goals:
 - Developing the knowledge base to enable commercialization of geologic carbon sequestration (GCS)
 - Identifying and removing barriers to sequestration through targeted research.
 - Understanding processes and developing improved tools
 - improve quantitative interpretation of monitoring data to ensure 99 percent storage permanence.
 - ensure containment effectiveness.

Project Overview: Objectives

- Success Criteria (FY13)
 - Demonstration of petrophysical measurements using a resonant bar system on reservoir and/or cap rock materials
 - Perform geochemical assessments for GCS reservoir rock types
 - Contribution of new and/or improved instrumentation for application to GCS

Technical Status

- Fundamental Studies began in FY13 by bringing together existing work to investigate monitoring technologies and fundamental geochemical and petrophysical processes that underpin GCS.
- The work was motivated by GEO-SEQ field projects, and their use as testing facilities to scale up from laboratory to field scale.
- Reorganization within CSRP for FY13

FY12

Task 1.0: Project Management

Task 2.0: GEO-SEQ

- Otway
- In Salah
- Fundamental Studies
 - Petrophysics
 - Monitoring Instrumentation
 - Partitioning Tracers
- Geochemical Assessment
- Certification Framework

Task 3.0: Sim-SEQ

Task 4.0: Large-Scale Hydrological Impacts of CO₂

Geological Storage

Task 5.0: CO2SINK Collaboration

FY 13

Task1.0: Management

Task 2.0: GEO-SEQ

- Otway
- In Salah
- CO2SINK
- Aquistore

Task 3.0: Fundamental Studies

- Petrophysics
- Geochemical Assessment
- Monitoring Instrumentation Development

Task 4.0: Simulation Studies

- Large-Scale Impacts
- Sim-SEQ
- CF CO₂-EOR simulation
- Stochastic Inversion

Petrophysical Relationships

PI: Seiji Nakagawa

- Goal: Improve understanding of relationships between measured data and desired information
- Focus on Seismic Velocity as a function of CO₂
 Saturation
 - Changes in seismic velocity have provided excellent 'maps' of CO₂ distribution – but what is the true saturation?

Cranfield Tuscaloossa Reservoir

Ajo-Franklin, et al, 2013 IJGCC.

Utilize Modern Petrophysical Models: 'Patchy' Saturation

Analysis of Tuscaloosa D/E (Cranfield Reservoir)

What affects the seismic response calculation?

"Patch Size", Frequency,

pressure, temperature, brine properties, matrix properties (density, moduli of grains), clay percentage and clay properties, porosity, CO₂ property model, CH₄ property model

Variation within reservoir: 10470 ft core data predicts larger change than 10465' core.

Ajo-Franklin, et al, 2013 IJGCC.

Develop Instruments

Split Hopkins Resonant Bar

- Laboratory seismic measurements with concurrent x-ray CT imaging
 - LBNL's x-ray CT scanner (GE Lightspeed 16).
- In Situ P/T conditions

Nakagawa and Kneafsey, LBNL

Petrophysics Measurement of Fundamental Properties

CT Scan Image of CO₂ in Core

- Results:
- Estimate ~ 300 m/s change in velocity
- Measure seismic velocity vs CO₂ saturation
 - Estimate patch size (~1 cm) limited by core size (~2 cm)
- Strong structural anisotropy of the rock

Velocity vs Saturation

Nakagawa, et al, 2013, Geophysical Prospecting

New Results: Intact vs Fractured Reservoir

Fracture

- Understand how fractures in reservoir influences distribution of CO₂, and impacts the seismic velocity and attenuation
- Initial result difference in attenuation

Geochemical Assessment

PI: Kevin Knauss, LBNL

Goals

- Conduct experiments to understand geochemistry of CO₂ sequestration processes spanning injection, neutralization and long-term phases of storage
 - GCS site core samples span expected rock types
 - Evaluate the fate and longevity of released metals into aqueous solutions
- Develop simplified screening tests that industry can use to evaluate site suitability and predicted performance

Geochemical Assessment

- "real" brine experiments
 - Synthetic brine matched to field composition
 - Frio C- and Blue sands, Cranfield, Weyburn
- Role of O₂ fugacity
 - Metal release
 - Fate upon neutralization
- Screening protocol
 - Develop simplified test
 - Criteria specific to rock type

New Results Weyburn Reservoir

- Completed an experiment using the solid material from the Midale Marly Unit of the Weyburn reservoir rock
- Three different stages over 99 days
 - Stage 1: 28 days Reaction of Marly dolostone with the CO₂-saturated fluid
 - Stage 2: the reacting fluid was diluted by injection of a CO_2 -free NaCl pH = 2.7.
 - Monitored for 49 days
 - Stage 3: 20 days introduce acidified (pH = 1.7) brine containing elevated levels of metals (Cr, Ni, Zn and Pb)

Monitoring Instrumentation Development

- LBNL's participation in pilot tests via GEO-SEQ led to development and application of novel monitoring tools for GCS
 - U-tube fluid sampling
 - Continuous Seismic Monitoring (CASSM)
 - Borehole shear-wave source (orbital vibrator)
 - Fiber Optic Monitoring
 - Heat-Pulse Thermal Monitoring
 - Distributed Acoustic Sensing

Custom Packer Design for Monitoring

U-Tube Fluid Sampling Examples from Otway Project

- Goal: Near continuous measurement of aqueous and gas geochemistry
 - Value of U-tube sampling demonstrated at Frio, Otway, Cranfield, and elsewhere

Cranfield: From Lu, et al, 2012, JGR

CO₂ and CH₄ (top); SF₆ and wellhead pressure (bottom): Well 31F2

CASSM

Continuous Active-Source Seismic Monitoring

- Goal: Precision In-situ monitoring of seismic properties
 - Current: crosswell geometery
 - Planned: surface borehole

- Motivation:
 - Monitoring of In-Situ Processes
 - Reservoir dynamics and petrophysics
 - Velocity/Saturation (fluid effects)
 - Coupled flow/seismic data/models

CASSM Applications

Continuous Seismic Monitoring

Frio-II; Daley, et al, 2008

Cranfield 2010; Daley, LBNL

Piezo-Tube Seismic Source

Velocity-Pore Pressure @ 3.2km

Borehole Seismic Source: Orbital Vibrator

Unique ability to generate P- and S-Waves

in 100-1000 Hz band

Higher power than piezoelectric

High-Speed Orbital Vibrator

Fiber Optic Technology

Distributed Temperature Sensing

Ketzin Data Courtesy Jan Henninges, GFZ

Distributed Acoustic Sensing (DAS)

- Goal: Robust, less expensive, continuous monitoring
- DAS acquisition allows seismic monitoring with fiber optic
 - Sensitivity less than standard geophone, but
 - Spatial sampling and ease of deployment much greater

DAS Data from Ketzin CO2 Pilot

Fiber deployed behind casing (but not cemented at all depths)

Aquistore Project: DAS Vertical Seismic Profile

Behind Casing, cemented, 3 km, explosive shot

Accomplishments to Date

Petrophysics

- Development of Resonant Bar with CT Scanning
- Seismic theory tested with measurements at field scale (wavelength) on GCS reservoir core
- Improved estimates of in-situ CO₂ saturation

Geochemical Processes

- Analsyis of core samples spanning expected rock types
- Emphasize metal mobilization and impact of O₂ fugacity
- Develop simplified screening tests that industry can use to evaluate site suitability and predicted performance

Instrumentation Development

- Improved fluid sampling (U-tube)
- Improved seismic monitoring (CASSM, Orbital Vibrator)
- Development/Testing of Fiber Optic Technology

Summary

Key Findings

- Seismic estimates of saturation need petrophysical measurements and constraints
- Need simplified screening tests for geochemical effects
- Fiber optic monitoring has notable potential

Lessons Learned

Fundamental studies are needed and best motivated by field applications

- Future Plans

- Further analysis and development of
 - petrophysical relationship between seismic velocity and CO₂ saturation
 - Geochemical effects on GCS on reservoir rocks
 - Monitoring technology and tools

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- Fundamental Studies is a subtask of LBNL's Consolidated Sequestration Research Program lead by Barry Freifeld
- Closely linked to GEO-SEQ also lead by Barry Freifeld
- Fundamental Studies has three tasks with principal investigators (PI) and scientific task leads
 - PI: Tom Daley
 - Petrophysical Relationships PI: Tom Daley
 - Task Leads: Seiji Nakagawa, Tim Kneafsey, Jonathan Ajo-Franklin
 - Geochemical Assessment PI: Kevin Knauss
 - Monitoring Instrumentation PI: Tom Daley
 - Task Leads: Barry Freifeld, Jonathan Ajo-Franklin

Fundamental Studies	Title	Role in Task/Subtask
T. Daley	PI and Research Scientist	Lead scientist for fundamental studies
S. Nakagawa	Research Scientist	Scientist working on rock mechanics using resonant
		bar apparatus
J. Ajo-Franklin	Research Scientist	Geophysicist supporting laboratory studies and field seismic data processing
M. Robertson	Project Scientist	Coordinator of field projects and oversees geophysical measurement facility support
P. Cook	Scientific Engineering Associate	Mechanical engineering and project support
K.G. Knauss	PI and Research Scientist	Geochemist supervising laboratory studies
J.P. Icenhower	Research Scientist	Geochemist working on CO2 laboratory studies
G.D. Saldi	Postdoc	Geochemist working on CO2 laboratory studies
N.J. Pester	Postdoc	Geochemist working on CO2 laboratory studies

Gantt Chart

- The Fundamental Studies Task began in FY13 with reorganization of LBNL's CSRP. FY13 milestones shown.
- Current planning for FY14 is in progress.

	Q1 FY13		Q2 FY13		Q3 FY13			Q4 FY13				
Subtask Description	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Task 3 Fundamental Studies												
Subtask 3.1 Petrophysics										F		
Subtask 3.2 Partioning Tracers												
Subtask 3.3 Fundamental Studies: Geochemical Assessment												
Subtask 3.4 Monitoring Instrumentation Development			Е									

Bibliography (FY13)

- Daley, TM, Freifeld, BM, Ajo-Franklin, J, Dou, S, Pevzner, R, Shulakova, V, Kashikar, S, Miller, DE, Goetz, J, Henninges, J, and Lueth, S (2013). Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring, The Leading Edge 32, 6, pp. 699-706, http://dx.doi.org/10.1190/tle32060699.1
- Saldi, G.D., Daval, D, Morvan, G. and Knauss K.G. (2013) The role of Fe and redox conditions in olivine carbonations rates: an experimental study of the rate limiting reactions at 90 and 150 °C in open and close systems, Geochimica et Cosmochimica Acta 118,157-183.
- Daval, D., Hellmann, R., Saldi, G.D., Wirth, R., Knauss, K.G., Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: new insights based on diopside, Geochimica et Cosmochimica Acta (2013), doi: http://dx.doi.org/10.1016/j.gca.2012.12.045
- Nakagawa, S., T.J. Kneafsey, T.M. Daley, B.M. Freifeld, and E.V. Rees. 2013. Laboratory seismic monitoring of supercritical CO₂ flooding in sandstone cores using the Split Hopkinson Resonant Bar technique with concurrent x-ray Computed Tomography imaging, *Geophys. Prespect.*, **61**, 254-269, doi: 10.1111/1365-2478.12027

Geochemical Assessment

Accomplishments

- Completed all phases for Cranfield Reservoir
- clean sand, dirty sand and altered sand
- Participated in international calibration exercise
 - Develop CO₂ sequestration research experimental protocols

Plans

- Complete carbonate case experiments
- Complete "real" brines experiments
- Design simplified tests specific to rock type